Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Proteome Res ; 22(4): 1231-1244, 2023 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-36971183

RESUMEN

Mucin-domain glycoproteins expressed on cancer cell surfaces play central roles in cell adhesion, cancer progression, stem cell renewal, and immune evasion. Despite abundant evidence that mucin-domain glycoproteins are critical to the pathobiology of head and neck squamous cell carcinoma (HNSCC), our knowledge of the composition of that mucinome is grossly incomplete. Here, we utilized a catalytically inactive point mutant of the enzyme StcE (StcEE447D) to capture mucin-domain glycoproteins in head and neck cancer cell line lysates followed by their characterization using sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE), in-gel digestion, nano-liquid chromatography-tandem mass spectrometry (nLC-MS/MS), and enrichment analyses. We demonstrate the feasibility of this workflow for the study of mucin-domain glycoproteins in HNSCC, identify a set of mucin-domain glycoproteins common to multiple HNSCC cell lines, and report a subset of mucin-domain glycoproteins that are uniquely expressed in HSC-3 cells, a cell line derived from a highly aggressive metastatic tongue squamous cell carcinoma. This effort represents the first attempt to identify mucin-domain glycoproteins in HNSCC in an untargeted, unbiased analysis, paving the way for a more comprehensive characterization of the mucinome components that mediate aggressive tumor cell phenotypes. Data associated with this study have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier PXD029420.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Lengua , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas/genética , Espectrometría de Masas en Tándem/métodos , Neoplasias de Cabeza y Cuello/genética , Glicoproteínas/genética , Glicoproteínas/química , Mucinas/genética
2.
Heliyon ; 5(3): e01376, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30949609

RESUMEN

Anxiety disorders, depression and pain are highly prevalent pathologies. Their pharmacotherapy is associated with unwanted side effects; hence there is a clinical need to develop more effective drugs with fewer adverse reactions. Chalcones are one of the major classes of naturally occurring compounds. Chalcones and their derivatives have a huge importance in medicinal chemistry, displaying a wide range of pharmacological activities including anti-inflammatory, antimicrobial, antioxidant, cytotoxic and antitumor actions. The aim of this work was to evaluate chalcone effects on different targets involved in these pathologies. We have synthesized a series of simple chalcone derivatives taking common structural requirements described in literature related to their anxiolytic-like, antidepressant-like and/or antinociceptive properties into account. Furthermore, their potential in vitro effects towards different targets involved in these pathologies were evaluated. We have obtained twenty chalcones with moderate to high yields and assessed their ability to bind distinctive receptors, from rat brain homogenates, by displacement of labelled specific ligands: [3H] FNZ (binding site of benzodiazepines/GABAA), [3H] 8-OH-DPAT (serotonin 5-HT1A) and [3H] DAMGO (µ-opioid). Those compounds that showed the better in vitro activities were evaluated in mice using different behavioural tasks. In vivo results showed that 5'-methyl-2'-hydroxychalcone (9) exerted anxiolytic-like effects in mice in the plus maze test. While chalcone nuclei (1) revealed antidepressant-like activities in the tail suspension test. In addition, the novel 5'-methyl-2'-hydroxy-3'-nitrochalcone (12) exhibited antinociceptive activity in acute chemical and thermal nociception tests (writhing and hot plate tests). In conclusion, chalcones are thus promising compounds for the development of novel drugs with central nervous system (CNS) actions.

3.
J Lipid Res ; 58(7): 1428-1438, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28515139

RESUMEN

Ceramides (Cers) and complex sphingolipids with defined acyl chain lengths play important roles in numerous cell processes. Six Cer synthase (CerS) isoenzymes (CerS1-6) are the key enzymes responsible for the production of the diversity of molecular species. In this study, we investigated the changes in sphingolipid metabolism during the differentiation of Madin-Darby canine kidney (MDCK) cells. By MALDI TOF TOF MS, we analyzed the molecular species of Cer, glucosylceramide (GlcCer), lactosylceramide (LacCer), and SM in nondifferentiated and differentiated cells (cultured under hypertonicity). The molecular species detected were the same, but cells subjected to hypertonicity presented higher levels of C24:1 Cer, C24:1 GlcCer, C24:1 SM, and C16:0 LacCer. Consistently with the molecular species, MDCK cells expressed CerS2, CerS4, and CerS6, but with no differences during cell differentiation. We next evaluated the different synthesis pathways with sphingolipid inhibitors and found that cells subjected to hypertonicity in the presence of amitriptyline, an inhibitor of acid sphingomyelinase, showed decreased radiolabeled incorporation in LacCer and cells did not develop a mature apical membrane. These results suggest that hypertonicity induces the endolysosomal degradation of SM, generating the Cer used as substrate for the synthesis of specific molecular species of glycosphingolipids that are essential for MDCK cell differentiation.


Asunto(s)
Diferenciación Celular , Ceramidas/metabolismo , Animales , Perros , Regulación Enzimológica de la Expresión Génica , Células de Riñón Canino Madin Darby , Oxidorreductasas/genética
4.
Biochim Biophys Acta ; 1843(12): 2991-3003, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25241342

RESUMEN

In epithelial cells, vinculin is enriched in cell adhesion structures but is in equilibrium with a large cytosolic pool. It is accepted that when cells adhere to the extracellular matrix, a part of the soluble cytosolic pool of vinculin is recruited to specialized sites on the plasma membrane called focal adhesions (FAs) by binding to plasma membrane phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2). We have previously shown that bradykinin (BK) induces both a reversible dissipation of vinculin from FAs, by the phospholipase C (PLC)-mediated hydrolysis of PtdIns(4,5)P2, and the concomitant internalization of vinculin. Here, by using an immunomagnetic method, we isolated vinculin-containing vesicles induced by BK stimulation. By analyzing the presence of proteins involved in vesicle traffic, we suggest that vinculin can be delivered in the site of FA reassembly by a vesicular endocytic recycling pathway. We also observed the formation of vesicle-like structures containing vinculin in the cytosol of cells treated with lipid membrane-affecting agents, which caused dissipation of FAs due to their deleterious effect on membrane microdomains where FAs are inserted. However, these vesicles did not contain markers of the recycling endosomal compartment. Vinculin localization in vesicles has not been reported before, and this finding challenges the prevailing model of vinculin distribution in the cytosol. We conclude that the endocytic recycling pathway of vinculin could represent a physiological mechanism to reuse the internalized vinculin to reassembly new FAs, which occurs after long time of BK stimulation, but not after treatment with membrane-affecting agents.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...