Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 7781, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012145

RESUMEN

Integration of heterogeneous single-cell sequencing datasets generated across multiple tissue locations, time, and conditions is essential for a comprehensive understanding of the cellular states and expression programs underlying complex biological systems. Here, we present scDREAMER ( https://github.com/Zafar-Lab/scDREAMER ), a data-integration framework that employs deep generative models and adversarial training for both unsupervised and supervised (scDREAMER-Sup) integration of multiple batches. Using six real benchmarking datasets, we demonstrate that scDREAMER can overcome critical challenges including skewed cell type distribution among batches, nested batch-effects, large number of batches and conservation of development trajectory across batches. Our experiments also show that scDREAMER and scDREAMER-Sup outperform state-of-the-art unsupervised and supervised integration methods respectively in batch-correction and conservation of biological variation. Using a 1 million cells dataset, we demonstrate that scDREAMER is scalable and can perform atlas-level cross-species (e.g., human and mouse) integration while being faster than other deep-learning-based methods.


Asunto(s)
Ascomicetos , Humanos , Animales , Ratones , Benchmarking , Análisis de la Célula Individual
2.
bioRxiv ; 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38187699

RESUMEN

Key to understanding many biological phenomena is knowing the temporal ordering of cellular events, which often require continuous direct observations [1, 2]. An alternative solution involves the utilization of irreversible genetic changes, such as naturally occurring mutations, to create indelible markers that enables retrospective temporal ordering [3-8]. Using NSC-seq, a newly designed and validated multi-purpose single-cell CRISPR platform, we developed a molecular clock approach to record the timing of cellular events and clonality in vivo , while incorporating assigned cell state and lineage information. Using this approach, we uncovered precise timing of tissue-specific cell expansion during murine embryonic development and identified new intestinal epithelial progenitor states by their unique genetic histories. NSC-seq analysis of murine adenomas and single-cell multi-omic profiling of human precancers as part of the Human Tumor Atlas Network (HTAN), including 116 scRNA-seq datasets and clonal analysis of 418 human polyps, demonstrated the occurrence of polyancestral initiation in 15-30% of colonic precancers, revealing their origins from multiple normal founders. Thus, our multimodal framework augments existing single-cell analyses and lays the foundation for in vivo multimodal recording, enabling the tracking of lineage and temporal events during development and tumorigenesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...