Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1323390, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38439988

RESUMEN

The CRISPR/Cas9 ribonucleoprotein (RNP)-mediated technology represents a fascinating tool for modifying gene expression or mutagenesis as this system allows for obtaining transgene-free plants, avoiding exogenous DNA integration. Holm oak (Quercus ilex) has an important social, economic, and ecological role in the Mediterranean climate zones of Western Europe and North Africa and is severely affected by oak decline syndrome. Here we report the first example of the application of the CRISPR/Cas9-RNP technology in holm oak. Firstly, we evaluated the protoplast isolation from both in vitro leaves and proembryogenic masses. Proembryogenic masses represented the best material to get high protoplast yield (11 x 106 protoplasts/ml) and viability. Secondly, the protoplast transfection ability was evaluated through a vector expressing green fluorescence protein as marker gene of transfection, reaching a transfection percentage of 62% after 24 hours. CRISPR/Cas9 RNPs were successfully delivered into protoplasts resulting in 5.6% ± 0.5% editing efficiency at phytoene desaturase (pds) target genomic region. Protoplasts were then cultured in semisolid media and, after 45 days in culture, developed embryogenic calli were observed in a Murashige and Skoog media with half concentration of NH4NO3 and KNO3 supplemented with 0.1 mg/L benzylaminopurine and 0.1 mg/L 2,4-dichlorophenoxyacetic acid.

2.
Plant Physiol Biochem ; 205: 108167, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37977029

RESUMEN

The increasing interest in European hazelnut (Corylus avellana L.) cultivation registered in the last years has led to a significant increase in worldwide hazelnut growing areas, also involving regions characterized by a marginal presence of hazelnut orchards. Despite this increasement, world production still relies on the cultivation of few varieties, most of which are particularly suitable to the environment where they have been selected. Therefore, it is necessary to develop new cultivars with high environmental plasticity capable of providing constant and high-quality productions in the new environments and under the climatic change conditions of traditional growing areas. Over the years, many molecular markers for genetic breeding programs have been developed and omics sciences also provided further information about the genetics of this species. These data could be of support to the application of new plant breeding techniques (NPBTs), which would allow the development of cultivars with the desired characteristics in a shorter time than traditional techniques. However, the application of these methodologies is subordinated to the development of effective regeneration protocols which, to date, have been set up exclusively for seed-derived explants. A further aspect to be exploited is represented by the possibility of cultivating hazelnut cells and tissues in vitro to produce secondary metabolites of therapeutic interest. This review aims to consolidate the state of the art on biotechnologies and in vitro culture techniques applied on this species, also describing the various studies that over time allowed the identification of genomic regions that control traits of interest.


Asunto(s)
Corylus , Corylus/genética , Corylus/metabolismo , Fitomejoramiento , Fenotipo , Semillas , Biotecnología
3.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36674493

RESUMEN

Climate change is deeply impacting the food chain production, lowering quality and yield. In this context, the international scientific community has dedicated many efforts to enhancing resilience and sustainability in agriculture. Italy is among the main European producers of several fruit trees; therefore, national research centers and universities undertook several initiatives to maintain the specificity of the 'Made in Italy' label. Despite their importance, fruit crops are suffering from difficulties associated with the conventional breeding approaches, especially in terms of financial commitment, land resources availability, and long generation times. The 'new genomic techniques' (NGTs), renamed in Italy as 'technologies for assisted evolution' (TEAs), reduce the time required to obtain genetically improved cultivars while precisely targeting specific DNA sequences. This review aims to illustrate the role of the Italian scientific community in the use of NGTs, with a specific focus on Citrus, grapevine, apple, pear, chestnut, strawberry, peach, and kiwifruit. For each crop, the key genes and traits on which the scientific community is working, as well as the technological improvements and advancements on the regeneration of local varieties, are presented. Lastly, a focus is placed on the legal aspects in the European and in Italian contexts.


Asunto(s)
Frutas , Árboles , Árboles/genética , Frutas/genética , Fitomejoramiento/métodos , Genoma de Planta , Genómica
4.
Plants (Basel) ; 11(23)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36501347

RESUMEN

Castanea sativa cv. 'Garrone Rosso' and 'Marrone di Castel del Rio' are two of the most prized varieties in Italy due to their valuable and healthy nuts used for fresh consumption and in the confectionery industry. Despite the growing demand for chestnuts, there are constraints regarding plant propagation that hamper the renewal and new planting of orchards in different areas. Castanea sativa is susceptible to diseases that have caused a reduction in its area of production. For this reason, in vitro culture represents a valuable technique for germplasm preservation and plant multiplication enabling production of a high number of plants for use in breeding programs. Here we present an in vitro micropropagation protocol for Italian Castanea sativa cv. 'Marrone di Castel del Rio' and cv. 'Garrone Rosso' to contribute to the preservation and enhancement of the Italian germplasm. Nodal explants were used as the starting material for in vitro establishment. The cv. 'Marrone di Castel del Rio' showed a high percentage of survival explants (92%) when subjected to long bleach exposure (25 min), in contrast to what was observed for the 'Garrone Rosso' cultivar. Ascorbic acid was found to be the best compound to counteract phenol exudation. The MS3B and DKW media supplied with 0.5 mg/L BAP were effective for in vitro establishment, while the DKW medium (0.1 mg/L BAP and 0.05 mg/L IBA) was preferable for the proliferation phase. A double-layer rooting methodology was used and 35% rooting was observed with 25 mg/L IBA rooting treatment.

5.
Plants (Basel) ; 11(18)2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36145750

RESUMEN

Polyploid induction is of utmost importance in horticultural plants for the development of new varieties with desirable morphological and physiological traits. Polyploidy may occur naturally due to the formation of unreduced gametes or can be artificially induced by doubling the number of chromosomes in somatic cells. In this experiment, a protocol for in vitro polyploid induction of highbush blueberry (Vaccinium corymbosum L.) leaf tissues was studied by using different concentrations of colchicine and oryzalin. Oryzalin was found to be highly toxic to this species, while the adventitious shoot organogenesis media enriched with 25 and 250 µM colchicine was able to induce polyploidization, with significant differences among the treatments used. Higher concentrations of both antimitotic agents led to the browning and death of the leaf tissues. The polyploids obtained showed several morphological differences when compared with the diploid shoots. Flow cytometry analysis was used to confirm the ploidy level of the regenerated shoots, demonstrating that a total of 15 tetraploids and 34 mixoploids were obtained. The stomatal sizes (length and width) of the tetraploids were larger than those of the diploids, but a reduced stomatal density was observed as compared to the controls. These shoots will be acclimatized and grown until they reach the reproductive phase in order to test their potential appeal as new varieties or their use for breeding and genetic improvement.

6.
Int J Mol Sci ; 23(10)2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35628572

RESUMEN

Castanea sativa is an important tree nut species worldwide, highly appreciated for its multifunctional role, in particular for timber and nut production. Nowadays, new strategies are needed to achieve plant resilience to diseases, climate change, higher yields, and nutritional quality. Among the new plant breeding techniques (NPBTs), the CRISPR/Cas9 system represents a powerful tool to improve plant breeding in a short time and inexpensive way. In addition, the CRISPR/Cas9 construct can be delivered into the cells in the form of ribonucleoproteins (RNPs), avoiding the integration of exogenous DNA (GMO-free) through protoplast technology that represents an interesting material for gene editing thanks to the highly permeable membrane to DNA. In the present study, we developed the first protoplast isolation protocol starting from European chestnut somatic embryos. The enzyme solution optimized for cell wall digestion contained 1% cellulase Onozuka R-10 and 0.5% macerozyme R-10. After incubation for 4 h at 25 °C in dark conditions, a yield of 4,500,000 protoplasts/mL was obtained (91% viable). The transfection capacity was evaluated using the GFP marker gene, and the percentage of transfected protoplasts was 51%, 72 h after the transfection event. The direct delivery of the purified RNP was then performed targeting the phytoene desaturase gene. Results revealed the expected target modification by the CRISPR/Cas9 RNP and the efficient protoplast editing.


Asunto(s)
Edición Génica , Ribonucleoproteínas , Sistemas CRISPR-Cas/genética , ADN , Edición Génica/métodos , Fitomejoramiento , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo
7.
Front Plant Sci ; 13: 1074541, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36589127

RESUMEN

Among the New Plant Breeding Techniques (NPBTs), the CRISPR/Cas9 system represents a useful tool for target gene editing, improving the traits of the plants rapidly. This technology allows targeting one or more sequences simultaneously, as well as introducing new genetic variations by homology-directed recombination. However, the technology of CRISPR/Cas9 remains a challenge for some polyploid woody species, since all the different alleles for which the mutation is required must be simultaneously targeted. In this work we describe improved protocols adapting the CRISPR/Cas9 system to highbush blueberry (Vaccinium corymbosum L.), using Agrobacterium-mediated transformation. As a proof of concept, we targeted the gene encoding for phytoene desaturase, whose mutation disrupts chlorophyll biosynthesis allowing for the visual assessment of knockout efficiency. Leaf explants of in vitro-cultured blueberry cv. Berkeley has been transformed with a CRISPR/Cas9 construct containing two guide RNAs (gRNA1 and gRNA2) targeting two conserved gene regions of pds and subsequently maintained on a selection medium enriched with kanamycin. After 4 weeks in culture on the selection medium, the kanamycin-resistant lines were isolated, and the genotyping of these lines through Sanger sequencing revealed successful gene editing. Some of mutant shoot lines included albino phenotypes, even if the editing efficiencies were quite low for both gRNAs, ranging between 2.1 and 9.6% for gRNA1 and 3.0 and 23.8 for gRNA2. Here we showed a very effective adventitious shoot regeneration protocol for the commercial cultivar of highbush blueberry "Berkeley", and a further improvement in the use of CRISPR/Cas9 system in Vaccinium corymbosum L., opening the way to the breeding mediated by biotechnological approaches.

8.
Front Plant Sci ; 12: 728516, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34512704

RESUMEN

CRISPR/Cas9 has emerged as the most important tool for genome engineering due to its simplicity, design flexibility, and high efficiency. This technology makes it possible to induce point mutations in one or some target sequences simultaneously, as well as to introduce new genetic variants by homology-directed recombination. However, this approach remains largely unexplored in forest species. In this study, we reported the first example of CRISPR/Cas9-mediated gene editing in Castanea genus. As a proof of concept, we targeted the gene encoding phytoene desaturase (pds), whose mutation disrupts chlorophyll biosynthesis allowing for the visual assessment of knockout efficiency. Globular and early torpedo-stage somatic embryos of Castanea sativa (European chestnut) were cocultured for 5 days with a CRISPR/Cas9 construct targeting two conserved gene regions of pds and subsequently cultured on a selection medium with kanamycin. After 8 weeks of subculture on selection medium, four kanamycin-resistant embryogenetic lines were isolated. Genotyping of these lines through target Sanger sequencing of amplicons revealed successful gene editing. Cotyledonary somatic embryos were maturated on maltose 3% and cold-stored at 4°C for 2 months. Subsequently, embryos were subjected to the germination process to produce albino plants. This study opens the way to the use of the CRISPR/Cas9 system in European chestnut for biotechnological applications.

9.
Plants (Basel) ; 10(5)2021 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-34063239

RESUMEN

Castanea sativa is one of the main multipurpose tree species valued for its timber and nuts. This species is susceptible to two major diseases, ink disease and chestnut blight, caused by Phytophthora spp. and Cryphonectria parasitica, respectively. The loss-of-function mutations of genes required for the onset of pathogenesis, referred to as plant susceptibility (S) genes, are one mechanism of plant resistance against pathogens. On the basis of sequence homology, functional domain identification, and phylogenetic analyses, we report for the first time on the identification of S-genes (mlo1, dmr6, dnd1, and pmr4) in the Castanea genus. The expression dynamics of S-genes were assessed in C. sativa and C. crenata plants inoculated with P. cinnamomi and C. parasitica. Our results highlighted the upregulation of pmr4 and dmr6 in response to pathogen infection. Pmr4 was strongly expressed at early infection phases of both pathogens in C. sativa, whereas in C. crenata, no significant upregulation was observed. The infection of P. cinnamomi led to a higher increase in the transcript level of dmr6 in C. sativa compared to C. crenata-infected samples. For a better understanding of plant responses, the transcript levels of defense genes gluB and chi3 were also analyzed.

10.
G3 (Bethesda) ; 11(7)2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-33964151

RESUMEN

The European hazelnut (Corylus avellana L.; 2n = 2x = 22) is a worldwide economically important tree nut that is cross-pollinated due to sporophytic incompatibility. Therefore, any individual plant is highly heterozygous. Cultivars are clonally propagated using mound layering, rooted suckers, and micropropagation. In recent years, the interest in this crop has increased, due to a growing demand related to the recognized health benefits of nut consumption. C. avellana cv "Tonda Gentile delle Langhe" ("TGdL") is well-known for its high kernel quality, and the premium price paid for this cultivar is an economic benefit for producers in northern Italy. Assembly of a high-quality genome is a difficult task in many plant species because of the high level of heterozygosity. We assembled a chromosome-level genome sequence of "TGdL" with a two-step approach. First, 10X Genomics Chromium Technology was used to create a high-quality sequence, which was then assembled into scaffolds with cv "Tombul" genome as the reference. Eleven pseudomolecules were obtained, corresponding to 11 chromosomes. A total of 11,046 scaffolds remained unplaced, representing 11% of the genome (46,504,161 bp). Gene prediction, performed with Maker-P software, identified 27,791 genes (AED ≤0.4 and 92% of BUSCO completeness), whose function was analyzed with BlastP and InterProScan software. To characterize "TGdL" specific genetic mechanisms, Orthofinder was used to detect orthologs between hazelnut and closely related species. The "TGdL" genome sequence is expected to be a powerful tool to understand hazelnut genetics and allow detection of markers/genes for important traits to be used in targeted breeding programs.


Asunto(s)
Corylus , Corylus/genética , Fitomejoramiento , Nueces , Fenotipo , Genómica
11.
Front Plant Sci ; 12: 749394, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35003153

RESUMEN

An increasing interest in the cultivation of (European) hazelnut (Corylus avellana) is driving a demand to breed cultivars adapted to non-conventional environments, particularly in the context of incipient climate change. Given that plant phenology is so strongly determined by genotype, a rational approach to support these breeding efforts will be to identify quantitative trait loci (QTLs) and the genes underlying the basis for adaptation. The present study was designed to map QTLs for phenology-related traits, such as the timing of both male and female flowering, dichogamy, and the period required for nuts to reach maturity. The analysis took advantage of an existing linkage map developed from a population of F1 progeny bred from the cross "Tonda Gentile delle Langhe" × "Merveille de Bollwiller," consisting in 11 LG. A total of 42 QTL-harboring regions were identified. Overall, 71 QTLs were detected, 49 on the TGdL map and 22 on the MB map; among these, 21 were classified as major; 13 were detected in at least two of the seasons (stable-major QTL). In detail, 20 QTLs were identified as contributing to the time of male flowering, 15 to time of female flowering, 25 to dichogamy, and 11 to time of nut maturity. LG02 was found to harbor 16 QTLs, while 15 QTLs mapped to LG10 and 14 to LG03. Many of the QTLs were clustered with one another. The major cluster was located on TGdL_02 and consisted of mainly major QTLs governing all the analyzed traits. A search of the key genomic regions revealed 22 candidate genes underlying the set of traits being investigated. Many of them have been described in the literature as involved in processes related to flowering, control of dormancy, budburst, the switch from vegetative to reproductive growth, or the morphogenesis of flowers and seeds.

12.
Plants (Basel) ; 9(8)2020 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-32824716

RESUMEN

Castanea sativa is an important multipurpose species in Europe for nut and timber production as well as for its role in the landscape and in the forest ecosystem. This species has low tolerance to chestnut gall wasp (Dryocosmus kuriphilus Yasumatsu), which is a pest that was accidentally introduced into Europe in early 2000 and devastated forest and orchard trees. Resistance to the gall wasp was found in the hybrid cultivar 'Bouche de Bétizac' (C. sativa × C. crenata) and studied by developing genetic linkage maps using a population derived from a cross between 'Bouche de Bétizac' and the susceptible cultivar 'Madonna' (C. sativa). The high-density genetic maps were constructed using double-digest restriction site-associated DNA-seq and simple sequence repeat markers. The map of 'Bouche de Bétizac' consisted of 1459 loci and spanned 809.6 cM; the map of 'Madonna' consisted of 1089 loci and spanned 753.3 cM. In both maps, 12 linkage groups were identified. A single major QTL was recognized on the 'Bouche de Bétizac' map, explaining up to 67-69% of the phenotypic variance of the resistance trait (Rdk1). The Rdk1 quantitative trait loci (QTL) region included 11 scaffolds and two candidate genes putatively involved in the resistance response were identified. This study will contribute to C. sativa breeding programs and to the study of Rdk1 genes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...