Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
R Soc Open Sci ; 11(5): 230859, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-39076787

RESUMEN

-Business reliance on algorithms is becoming ubiquitous, and companies are increasingly concerned about their algorithms causing major financial or reputational damage. High-profile cases include Google's AI algorithm for photo classification mistakenly labelling a black couple as gorillas in 2015 (Gebru 2020 In The Oxford handbook of ethics of AI, pp. 251-269), Microsoft's AI chatbot Tay that spread racist, sexist and antisemitic speech on Twitter (now X) (Wolf et al. 2017 ACM Sigcas Comput. Soc. 47, 54-64 (doi:10.1145/3144592.3144598)), and Amazon's AI recruiting tool being scrapped after showing bias against women. In response, governments are legislating and imposing bans, regulators fining companies and the judiciary discussing potentially making algorithms artificial 'persons' in law. As with financial audits, governments, business and society will require algorithm audits; formal assurance that algorithms are legal, ethical and safe. A new industry is envisaged: Auditing and Assurance of Algorithms (cf. data privacy), with the remit to professionalize and industrialize AI, ML and associated algorithms. The stakeholders range from those working on policy/regulation to industry practitioners and developers. We also anticipate the nature and scope of the auditing levels and framework presented will inform those interested in systems of governance and compliance with regulation/standards. Our goal in this article is to survey the key areas necessary to perform auditing and assurance and instigate the debate in this novel area of research and practice.

2.
R Soc Open Sci ; 5(6): 172096, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30110442

RESUMEN

In order to deal with an increasingly complex world, we need ever more sophisticated computational models that can help us make decisions wisely and understand the potential consequences of choices. But creating a model requires far more than just raw data and technical skills: it requires a close collaboration between model commissioners, developers, users and reviewers. Good modelling requires its users and commissioners to understand more about the whole process, including the different kinds of purpose a model can have and the different technical bases. This paper offers a guide to the process of commissioning, developing and deploying models across a wide range of domains from public policy to science and engineering. It provides two checklists to help potential modellers, commissioners and users ensure they have considered the most significant factors that will determine success. We conclude there is a need to reinforce modelling as a discipline, so that misconstruction is less likely; to increase understanding of modelling in all domains, so that the misuse of models is reduced; and to bring commissioners closer to modelling, so that the results are more useful.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA