Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Intervalo de año de publicación
1.
Langmuir ; 38(38): 11658-11665, 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36112511

RESUMEN

Characterization of bidimensional polymeric films at the air-water interface in the Langmuir trough, despite being a recurrent topic, usually refers to films of already formed polymeric materials, with very scarce reports on direct polymerization at the air-water interface. In the present work, we studied the photo-polymerization of stearyl methacrylate directly at the air-water interface under a nitrogen atmosphere, with the radical initiator solubilized in the aqueous phase. Two-dimensional (2D) polymerization was monitored by measuring the pressure-area isotherm at different irradiation times. The polymerization leads to a film with an isotherm different from that observed for the monomer, where the surface pressure is directly related to the irradiation time. The shape of this isotherm confirms the presence of a compressed liquid phase, where a higher order can be attained as a consequence of stronger packing forces involving polymer chains. The presence of inter-chain interactions allows rearrangements on the surface of the subphase, and even before the collapse a dense 2D ordering (with a solid phase-like behavior) can be observed. We present a new one-step, solvent-free procedure to obtain a photo-polymeric film directly at the air-water interface, which can be transferred to a solid surface by the Langmuir-Blodgett method, allowing film preparation of controlled thickness. Films were characterized by measuring properties such as thickness, roughness, and hydrophobicity and comparing them with films obtained from a conventional polymer. We report the differences between the interfacial behavior of amphiphilic molecules and nanomaterials such as films obtained by photo-polymerization, PSMA, directly on the air-water interface.

2.
ACS Appl Mater Interfaces ; 11(22): 19751-19762, 2019 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-31074956

RESUMEN

Surfaces were prepared with polyelectrolyte derivatives of poly(styrene- alt-maleic anhydride) (PSMA) functionalized with amino acids of different hydropathy indices, with the aim of evaluating the effect of the chemical functionality of polyelectrolytes on SH-SY5Y neuroblastoma cell adhesion. Functionalizing PSMA derivatives with l-glutamine, l-methionine, and l-tyrosine yielded PSMA-Gln, PSMA-Met, and PSMA-Tyr polyelectrolytes, respectively. We first studied the adsorption behavior of PSMA functionalized with amino acids on silicon wafer surfaces modified with 3-aminopropyltriethoxysilane at pH 4.0 and 7.0 and at low and high ionic strengths. The highest rate of polyelectrolyte adsorption was at pH 4.0 and high ionic strength and was higher with the glutamine and tyrosine films. The advance contact angles (θA) of the polyelectrolyte surfaces showed a moderate effect of ionic strength and pH on polyelectrolyte film wettability, with PSMA-Tyr being slightly more hydrophobic. Atomic force microscopy images of the polyelectrolyte surfaces showed two types of morphology: the well-defined globular nanostructure of PSMA-Met and PSMA-Tyr and densely packed nanofibrous-like structure of PSMA-Gln. The highest level of ionic strength caused a slight decrease in the size of the nanostructure that formed the surface domains, which was reflected in the degree of surface roughness. Cell adhesion assays with the polyelectrolyte film showed that SH-SY5Y neuroblastoma cells cultured on PSMA-Met present a well-extended morphology characterized by a stellate shape, with five or more actin-rich thin processes, whereas SH-SY5Y cells that were seeded on PSMA-Gln and PSMA-Tyr have a round morphology, with fewer and shorter processes. These results indicate that it is possible to modulate the surface characteristics of polyelectrolyte films based on their chemical functionality and environmental parameters such as pH and ionic strength in order to evaluate their effect on cell adhesion. Thus, surfaces prepared from polyelectrolytes functionalized with amino acids are an attractive and simple platform for cell adhesion, which can be used in developing biomaterials with modulated surface properties.


Asunto(s)
Aminoácidos/química , Nanoestructuras/química , Polielectrolitos/química , Polímeros/química , Adhesión Celular/efectos de los fármacos , Línea Celular Tumoral , Humanos , Concentración de Iones de Hidrógeno , Maleatos/química , Microscopía Electrónica de Rastreo , Nanoestructuras/ultraestructura , Polímeros/farmacología , Poliestirenos/química , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie , Humectabilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...