Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Int J Psychophysiol ; 201: 112355, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38718899

RESUMEN

Processes typically encompassed by working memory (WM) include encoding, retention, and retrieval of information. Previous research has demonstrated that motivation can influence WM performance, although the specific WM processes affected by motivation are not yet fully understood. In this study, we investigated the effects of motivation on different WM processes, examining how task difficulty modulates these effects. We hypothesized that motivation level and personality traits of the participants (N = 48, 32 females; mean age = 21) would modulate the parietal alpha and frontal theta electroencephalography (EEG) correlates of WM encoding, retention, and retrieval phases of the Sternberg task. This effect was expected to be more pronounced under conditions of very high task difficulty. We found that increasing difficulty led to reduced accuracy and increased response time, but no significant relationship was found between motivation and accuracy. However, EEG data revealed that motivation influenced WM processes, as indicated by changes in alpha and theta oscillations. Specifically, higher levels of the Resilience trait-associated with mental toughness, hardiness, self-efficacy, achievement motivation, and low anxiety-were related to increased alpha desynchronization during encoding and retrieval. Increased scores of Subjective Motivation to perform well in the task were related to enhanced frontal midline theta during retention. Additionally, these effects were significantly stronger under conditions of high difficulty. These findings provide insights into the specific WM processes that are influenced by motivation, and underscore the importance of considering both task difficulty and intrinsic motivation in WM research.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38591650

RESUMEN

OBJECTIVE: Assessing recovery potential in patients with disorders of consciousness (DoC) is pivotal for guiding clinical and ethical decisions. We conducted a mega-analysis of individual patient data to understand (1) if a time threshold exists, beyond which regaining consciousness is almost impossible, and (2) how recovery varies based on factors such as diagnosis, etiology, age, sex, and neuropsychological status. METHODS: A systematic literature search revealed a total of 3290 patients. In this sample, we performed a Cox proportional hazards analysis for interval censored data. RESULTS: We observed a late saturation of probability to regain consciousness in Kaplan-Meier curves, and the annual rate of recovery was remarkably stable, in that approximately 35% of patients regained consciousness per year. Patients in minimally conscious state (MCS) recovered more frequently than patients in unresponsive wakefulness syndrome (UWS). No significant difference was observed between the recovery dynamics of MCS subgroups: MCS+ and MCS-. Patients with hypoxic brain lesions showed worse recovery rate than patients with traumatic brain injury and patients with vascular brain lesions, while the latter two categories did not differ from each other. Male patients had moderately better chance to regain consciousness. While younger UWS patients recovered more frequently than older patients, it was not the case in MCS. INTERPRETATION: Our findings highlight the necessity for neurologists to exercise caution when making negative predictions in individual cases, challenge traditional beliefs regarding recovery timelines, and underscore the importance of conducting detailed and prolonged assessments to better understand recovery prospects in DoC.

3.
Sci Rep ; 13(1): 22592, 2023 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-38114566

RESUMEN

Cognitive load is a crucial factor in mentally demanding activities and holds significance across various research fields. This study aimed to investigate the effectiveness of pulse wave amplitude (PWA) as a measure for tracking cognitive load and associated mental effort in comparison to heart rate (HR) during a digit span task. The data from 78 participants were included in the analyses. Participants performed a memory task in which they were asked to memorize sequences of 5, 9, or 13 digits, and a control task where they passively listened to the sequences. PWA and HR were quantified from photoplethysmography (PPG) and electrocardiography (ECG), respectively. Pupil dilation was also assessed as a measure of cognitive load. We found that PWA showed a strong suppression with increasing memory load, indicating sensitivity to cognitive load. In contrast, HR did not show significant changes with task difficulty. Moreover, when memory load exceeded the capacity of working memory, a reversal of the PWA pattern was observed, indicating cognitive overload. In this respect, changes in PWA in response to cognitive load correlated with the dynamics of pupil dilation, suggesting a potential shared underlying mechanism. Additionally, both HR and PWA demonstrated a relationship with behavioral performance, with higher task-evoked HR and lower PWA associated with better memory performance. Our findings suggest that PWA is a more sensitive measure than HR for tracking cognitive load and overload. PWA, measured through PPG, holds significant potential for practical applications in assessing cognitive load due to its ease of use and sensitivity to cognitive overload. The findings contribute to the understanding of psychophysiological indicators of cognitive load and offer insights into the use of PWA as a non-invasive measure in various contexts.


Asunto(s)
Cognición , Memoria a Corto Plazo , Humanos , Frecuencia Cardíaca/fisiología , Memoria a Corto Plazo/fisiología
4.
Behav Sci (Basel) ; 13(2)2023 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-36829321

RESUMEN

Working memory and attention are interrelated constructs that are sometimes even considered indistinguishable. Since attention is not a uniform construct, it is possible that different types of attention affect working memory capacity differently. To clarify this issue, we investigated the relationship between working memory capacity and various components of attention. The sample consisted of 136 healthy adult participants aged 18 to 37 years (M = 20.58, SD = 2.74). Participants performed tasks typically used to assess working memory (operation span, change detection, simple digit span, and adaptive digit span tasks), selective attention (visual search task), and attention control (Stroop and antisaccade tasks). We tested several models with working memory and attention, either as a unitary factor or being divided into selective attention and attention control factors. A confirmatory factor analysis showed that the model with three latent variables-working memory capacity, attention control, and selective attention-fit the data best. Results showed that working memory and attention are distinct but correlated constructs: working memory capacity was only related to attention control, whereas attention control was related to both constructs. We propose that differences in working memory capacity are determined only by the ability to maintain attention on the task, while differences in the ability to filter out non-salient distractors are not related to working memory capacity.

5.
Psychophysiology ; 60(6): e14275, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36808118

RESUMEN

Understanding the physiological correlates of cognitive overload has implications for gauging the limits of human cognition, developing novel methods to define cognitive overload, and mitigating the negative outcomes associated with overload. Most previous psychophysiological studies manipulated verbal working memory load in a narrow range (an average load of 5 items). It is unclear, however, how the nervous system responds to a working memory load exceeding typical capacity limits. The objective of the current study was to characterize the central and autonomic nervous system changes associated with memory overload, by means of combined recording of electroencephalogram (EEG) and pupillometry. Eighty-six participants were presented with a digit span task involving the serial auditory presentation of items. Each trial consisted of sequences of either 5, 9, or 13 digits, each separated by 2 s. Both theta activity and pupil size, after the initial rise, expressed a pattern of a short plateau and a decrease with reaching the state of memory overload, indicating that pupil size and theta possibly have similar neural mechanisms. Based on the described above triphasic pattern of pupil size temporal dynamics, we concluded that cognitive overload causes physiological systems to reset, and release effort. Although memory capacity limits were exceeded and effort was released (as indicated by pupil dilation), alpha continued to decrease with increasing memory load. These results suggest that associating alpha with the focus of attention and distractor suppression is not warranted.


Asunto(s)
Electroencefalografía , Memoria a Corto Plazo , Humanos , Memoria a Corto Plazo/fisiología , Cognición/fisiología , Atención/fisiología , Psicofisiología
6.
Cogn Affect Behav Neurosci ; 23(1): 100-113, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36241964

RESUMEN

Fear memories can be altered after acquisition by processes, such as fear memory consolidation or fear extinction, even without further exposure to the fear-eliciting stimuli, but factors contributing to these processes are not well understood. Sleep is known to consolidate, strengthen, and change newly acquired declarative and procedural memories. However, evidence on the role of time and sleep in the consolidation of fear memories is inconclusive. We used highly sensitive electrophysiological measures to examine the development of fear-conditioned responses over time and sleep in humans. We assessed event-related brain potentials (ERP) in 18 healthy, young individuals during fear conditioning before and after a 2-hour afternoon nap or a corresponding wake interval in a counterbalanced within-subject design. The procedure involved pairing a neutral tone (CS+) with a highly unpleasant sound. As a control, another neutral tone (CS-) was paired with a neutral sound. Fear responses were examined before the interval during a habituation phase and an acquisition phase as well as after the interval during an extinction phase and a reacquisition phase. Differential fear conditioning during acquisition was evidenced by a more negative slow ERP component (stimulus-preceding negativity) developing before the unconditioned stimulus (loud noise). This differential fear response was even stronger after the interval during reacquisition compared with initial acquisition, but this effect was similarly pronounced after sleep and wakefulness. These findings suggest that fear memories are consolidated over time, with this effect being independent of intervening sleep.


Asunto(s)
Extinción Psicológica , Miedo , Humanos , Miedo/fisiología , Extinción Psicológica/fisiología , Condicionamiento Clásico/fisiología , Encéfalo , Sueño/fisiología
7.
Sci Data ; 9(1): 325, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35715429

RESUMEN

This dataset consists of raw 64-channel EEG, cardiovascular (electrocardiography and photoplethysmography), and pupillometry data from 86 human participants recorded during 4 minutes of eyes-closed resting and during performance of a classic working memory task - digit span task with serial recall. The participants either memorized or just listened to sequences of 5, 9, or 13 digits presented auditorily every 2 seconds. The dataset can be used for (1) developing algorithms for cognitive load discrimination and detection of cognitive overload; (2) studying neural (event-related potentials and brain oscillations) and peripheral (electrocardiography, photoplethysmography, and pupillometry) physiological signals during encoding and maintenance of each sequentially presented memory item; (3) correlating cognitive load and individual differences in working memory to neural and peripheral physiology, and studying the relationship between the physiological signals; (4) integration of the physiological findings with the vast knowledge coming from behavioral studies of verbal working memory in simple span paradigms. The data are shared in Brain Imaging Data Structure (BIDS) format and freely available on OpenNeuro ( https://openneuro.org/datasets/ds003838 ).


Asunto(s)
Encéfalo , Electroencefalografía , Memoria a Corto Plazo , Encéfalo/fisiología , Potenciales Evocados/fisiología , Humanos , Memoria a Corto Plazo/fisiología , Recuerdo Mental
8.
Neuroimage ; 257: 119056, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35283287

RESUMEN

Good scientific practice (GSP) refers to both explicit and implicit rules, recommendations, and guidelines that help scientists to produce work that is of the highest quality at any given time, and to efficiently share that work with the community for further scrutiny or utilization. For experimental research using magneto- and electroencephalography (MEEG), GSP includes specific standards and guidelines for technical competence, which are periodically updated and adapted to new findings. However, GSP also needs to be regularly revisited in a broader light. At the LiveMEEG 2020 conference, a reflection on GSP was fostered that included explicitly documented guidelines and technical advances, but also emphasized intangible GSP: a general awareness of personal, organizational, and societal realities and how they can influence MEEG research. This article provides an extensive report on most of the LiveMEEG contributions and new literature, with the additional aim to synthesize ongoing cultural changes in GSP. It first covers GSP with respect to cognitive biases and logical fallacies, pre-registration as a tool to avoid those and other early pitfalls, and a number of resources to enable collaborative and reproducible research as a general approach to minimize misconceptions. Second, it covers GSP with respect to data acquisition, analysis, reporting, and sharing, including new tools and frameworks to support collaborative work. Finally, GSP is considered in light of ethical implications of MEEG research and the resulting responsibility that scientists have to engage with societal challenges. Considering among other things the benefits of peer review and open access at all stages, the need to coordinate larger international projects, the complexity of MEEG subject matter, and today's prioritization of fairness, privacy, and the environment, we find that current GSP tends to favor collective and cooperative work, for both scientific and for societal reasons.


Asunto(s)
Electroencefalografía , Humanos
9.
Psychophysiology ; 59(5): e13735, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-33278030

RESUMEN

Brain oscillations likely play a significant role in the storage of information in working memory (WM). Despite the wide popularity of the topic, current attempts to summarize the research in the field are narrative reviews. We address this gap by providing a descriptive systematic review, in which we investigated oscillatory correlates of maintenance of verbal and visual information in WM. The systematic approach enabled us to challenge some common views popularized by previous research. The identified literature (100 EEG/MEG studies) highlighted the importance of theta oscillations in verbal WM: frontal midline theta enhanced with load in most verbal studies, while more equivocal results have been obtained in visual studies. Increasing WM load affected alpha activity in most studies, but the direction of the effect was inconsistent: the ratio of studies that found alpha increase versus decrease with increasing load was 80/20% in the verbal WM domain and close to 60/40% in the visual domain. Alpha asymmetry (left < right) was a common finding in both verbal and visual WM studies. Beta and gamma activity studies yielded the least convincing data: a diversity in the spatial and frequency distribution of beta activity prevented us from making a coherent conclusion; gamma rhythm was virtually neglected in verbal WM studies with no systematic support for sustained gamma changes during the delay in EEG studies in general.


Asunto(s)
Electroencefalografía , Memoria a Corto Plazo , Encéfalo , Electroencefalografía/métodos , Ritmo Gamma , Humanos
10.
Eur J Neurosci ; 54(7): 6497-6511, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34514642

RESUMEN

Most psychophysiological studies of working memory (WM) target only the short-term memory construct, whereas short-term memory is only a part of the WM responsible for the storage of sensory information. Here, we aimed to further investigate oscillatory brain mechanisms supporting the executive components of WM-the part responsible for the manipulation of information. We conducted an exploratory reanalysis of a previously published EEG dataset where 156 participants (82 females) performed tasks requiring either simple retention or retention and manipulation of verbal information in WM. A relatively long delay period (>6 s) was employed to investigate the temporal trajectory of the oscillatory brain activity. Compared with baseline, theta activity was significantly enhanced during encoding and the delay period. Alpha-band power decreased during encoding and switched to an increase in the first part of the delay before returning to the baseline in the second part; beta-band power remained below baseline during encoding and the delay. The difference between the manipulation and retention tasks in spectral power had diverse temporal trajectories in different frequency bands. The difference maintained over encoding and the first part of the delay in theta, during the first part of the delay in beta, and during the whole delay period in alpha. Our results suggest that task-related modulations in theta power co-vary with the demands on the executive control network; beta suppression during mental manipulation can be related to the activation of motor networks; and alpha is likely to reflect the activation of language areas simultaneously with sensory input blockade.


Asunto(s)
Electroencefalografía , Memoria a Corto Plazo , Encéfalo , Función Ejecutiva , Femenino , Humanos
11.
Cortex ; 144: 213-229, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33965167

RESUMEN

There is growing awareness across the neuroscience community that the replicability of findings about the relationship between brain activity and cognitive phenomena can be improved by conducting studies with high statistical power that adhere to well-defined and standardised analysis pipelines. Inspired by recent efforts from the psychological sciences, and with the desire to examine some of the foundational findings using electroencephalography (EEG), we have launched #EEGManyLabs, a large-scale international collaborative replication effort. Since its discovery in the early 20th century, EEG has had a profound influence on our understanding of human cognition, but there is limited evidence on the replicability of some of the most highly cited discoveries. After a systematic search and selection process, we have identified 27 of the most influential and continually cited studies in the field. We plan to directly test the replicability of key findings from 20 of these studies in teams of at least three independent laboratories. The design and protocol of each replication effort will be submitted as a Registered Report and peer-reviewed prior to data collection. Prediction markets, open to all EEG researchers, will be used as a forecasting tool to examine which findings the community expects to replicate. This project will update our confidence in some of the most influential EEG findings and generate a large open access database that can be used to inform future research practices. Finally, through this international effort, we hope to create a cultural shift towards inclusive, high-powered multi-laboratory collaborations.


Asunto(s)
Electroencefalografía , Neurociencias , Cognición , Humanos , Reproducibilidad de los Resultados
12.
Int J Psychophysiol ; 162: 69-78, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33556468

RESUMEN

The present review is the result of a one-day workshop on open science, held at the Annual Meeting of the Society for Psychophysiological Research in Washington, DC, September 2019. The contributors represent psychophysiological researchers at different career stages and from a wide spectrum of institutions. The state of open science in psychophysiology is discussed from different perspectives, highlighting key challenges, potential benefits, and emerging solutions that are intended to facilitate open science practices. Three domains are emphasized: data sharing, preregistration, and multi-site studies. In the context of these broader domains, we present potential implementations of specific open science procedures such as data format harmonization, power analysis, data, presentation code and analysis pipeline sharing, suitable for psychophysiological research. Practical steps are discussed that may be taken to facilitate the adoption of open science practices in psychophysiology. These steps include (1) promoting broad and accessible training in the skills needed to implement open science practices, such as collaborative research and computational reproducibility initiatives, (2) establishing mechanisms that provide practical assistance in sharing of processing pipelines, presentation code, and data in an efficient way, and (3) improving the incentive structure for open science approaches. Throughout the manuscript, we provide references and links to available resources for those interested in adopting open science practices in their research.


Asunto(s)
Psicofisiología , Humanos , Reproducibilidad de los Resultados
13.
BMC Med ; 18(1): 350, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-33213463

RESUMEN

BACKGROUND: Sleep-wakefulness cycles are an essential diagnostic criterion for disorders of consciousness (DOC), differentiating prolonged DOC from coma. Specific sleep features, like the presence of sleep spindles, are an important marker for the prognosis of recovery from DOC. Based on increasing evidence for a link between sleep and neuronal plasticity, understanding sleep in DOC might facilitate the development of novel methods for rehabilitation. Yet, well-controlled studies of sleep in DOC are lacking. Here, we aimed to quantify, on a reliable evaluation basis, the distribution of behavioral and neurophysiological sleep patterns in DOC over a 24-h period while controlling for environmental factors (by recruiting a group of conscious tetraplegic patients who resided in the same hospital). METHODS: We evaluated the distribution of sleep and wakefulness by means of polysomnography (EEG, EOG, EMG) and video recordings in 32 DOC patients (16 unresponsive wakefulness syndrome [UWS], 16 minimally conscious state [MCS]), and 10 clinical control patients with severe tetraplegia. Three independent raters scored the patients' polysomnographic recordings. RESULTS: All but one patient (UWS) showed behavioral and electrophysiological signs of sleep. Control and MCS patients spent significantly more time in sleep during the night than during daytime, a pattern that was not evident in UWS. DOC patients (particularly UWS) exhibited less REM sleep than control patients. Forty-four percent of UWS patients and 12% of MCS patients did not have any REM sleep, while all control patients (100%) showed signs of all sleep stages and sleep spindles. Furthermore, no sleep spindles were found in 62% of UWS patients and 21% of MCS patients. In the remaining DOC patients who had spindles, their number and amplitude were significantly lower than in controls. CONCLUSIONS: The distribution of sleep signs in DOC over 24 h differs significantly from the normal sleep-wakefulness pattern. These abnormalities of sleep in DOC are independent of external factors such as severe immobility and hospital environment.


Asunto(s)
Trastornos de la Conciencia/complicaciones , Polisomnografía/métodos , Trastornos del Sueño-Vigilia/etiología , Adolescente , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Adulto Joven
14.
Sci Rep ; 10(1): 16090, 2020 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-32999329

RESUMEN

Working memory (WM) consists of short-term storage and executive components. We studied cortical oscillatory correlates of these two components in a large sample of 156 participants to assess separately the contribution of them to individual differences in WM. The participants were presented with WM tasks of above-average complexity. Some of the tasks required only storage in WM, others required storage and mental manipulations. Our data indicate a close relationship between frontal midline theta, central beta activity and the executive components of WM. The oscillatory counterparts of the executive components were associated with individual differences in verbal WM performance. In contrast, alpha activity was not related to the individual differences. The results demonstrate that executive components of WM, rather than short-term storage capacity, play the decisive role in individual WM capacity limits.


Asunto(s)
Memoria a Corto Plazo/fisiología , Adolescente , Ritmo alfa/fisiología , Ritmo beta/fisiología , Corteza Cerebral/fisiología , Electroencefalografía , Fenómenos Electrofisiológicos , Función Ejecutiva/fisiología , Femenino , Humanos , Masculino , Estimulación Luminosa , Análisis y Desempeño de Tareas , Ritmo Teta/fisiología , Percepción Visual/fisiología , Adulto Joven
15.
Front Neurosci ; 13: 365, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31068776

RESUMEN

BACKGROUND: Many passive oddball experiments show a sharp negative deflection N3 after P3b, peaking between 400 and 500 ms, but this wave has never been analyzed properly. We conducted five passive oddball experiments, in which the number of deviants (i.e., one or two), their alleged meaning, and their distinctiveness varied. RESULTS: Mastoid- or common-referenced waveforms showed a fronto-central N3 in all experiments. The data were CSD (Current Source Density) transformed and underwent a Principal Component Analysis (PCA). The PCA revealed N3 containing two subcomponents with very stable peak latencies of about 415 and 455 ms, respectively. Both topography of the subcomponents and their variation with experimental conditions were very similar, indicating a midfrontal sink and a posterior temporal source. An analysis of P3a and P3b components replicated previously known effects. CONCLUSION: We discuss the similarities and differences between the passive N3 and other components including the MMN, N1, late positive Slow Wave, and reorienting negativity. We also make general hypotheses about a possible functional meaning of N3; on this basis, specific hypotheses are formulated and further experiments are suggested to test these hypotheses.

16.
Psychophysiology ; 56(7): e13370, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30908691

RESUMEN

The nature of cortical plasticity in learning is one of the most intriguing questions of modern cognitive neuroscience. Classical conditioning (as a typical case of associative learning) and electroencephalography together provide a good framework for expanding our knowledge about fast learning-related cortical changes. In our experiment, we employed a novel paradigm in which classical conditioning was combined with passive oddball. Nineteen subjects participated in the first experiment (aversive conditioning with painful shock as unconditioned stimulus (US) and neutral tones as conditioned stimulus (CS)), and 22 subjects in the second experiment (with a subject's own name as US). We used event-related potentials (ERPs) and time-frequency analyses to explore the CS-US interaction. We found a learning-induced increment of P3a in the first experiment and the late positive potential (LPP) in both experiments. These effects may be related to increased attentional and emotional significance of conditioned stimuli. We showed that the LPP and P3a effects, earlier found only in visual paradigms, generalize to the auditory sensory system. We also observed suppression of the low beta activity to CS+ in aversive conditioning over the hemisphere contralateral to expected electrical shocks, presumably indicating preparation of the somatosensory system to the expected nociceptive US.


Asunto(s)
Aprendizaje por Asociación/fisiología , Encéfalo/fisiología , Condicionamiento Clásico/fisiología , Potenciales Evocados/fisiología , Adulto , Mapeo Encefálico , Electroencefalografía , Electrochoque , Miedo/fisiología , Femenino , Humanos , Masculino , Adulto Joven
18.
Front Neurol ; 9: 315, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29867725

RESUMEN

A systematic search revealed 68 empirical studies of neurophysiological [EEG, event-related brain potential (ERP), fMRI, PET] variables as potential outcome predictors in patients with Disorders of Consciousness (diagnoses Unresponsive Wakefulness Syndrome [UWS] and Minimally Conscious State [MCS]). Data of 47 publications could be presented in a quantitative manner and systematically reviewed. Insufficient power and the lack of an appropriate description of patient selection each characterized about a half of all publications. In more than 80% studies, neurologists who evaluated the patients' outcomes were familiar with the results of neurophysiological tests conducted before, and may, therefore, have been influenced by this knowledge. In most subsamples of datasets, effect size significantly correlated with its standard error, indicating publication bias toward positive results. Neurophysiological data predicted the transition from UWS to MCS substantially better than they predicted the recovery of consciousness (i.e., the transition from UWS or MCS to exit-MCS). A meta-analysis was carried out for predictor groups including at least three independent studies with N > 10 per predictor per improvement criterion (i.e., transition to MCS versus recovery). Oscillatory EEG responses were the only predictor group whose effect attained significance for both improvement criteria. Other perspective variables, whose true prognostic value should be explored in future studies, are sleep spindles in the EEG and the somatosensory cortical response N20. Contrary to what could be expected on the basis of neuroscience theory, the poorest prognostic effects were shown for fMRI responses to stimulation and for the ERP component P300. The meta-analytic results should be regarded as preliminary given the presence of numerous biases in the data.

20.
Neurobiol Learn Mem ; 145: 129-134, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28962839

RESUMEN

Four experiments are reported in which two harmonic tones (CS+ and CS-) were paired with a participant's own name (SON) and different names (DN), respectively. A third tone was not paired with any other stimulus and served as a standard (frequent stimulus) in a three-stimuli oddball paradigm. The larger posterior positivity (P3) to SON than DN, found in previous studies, was replicated in all experiments. Conditioning of the P3 response was albeit observed in two similar experiments (1 and 3), but the obtained effects were weak and not identical in the two experiments. Only Experiment 4, where the number of CS/UCS pairings and the Stimulus-Onset Asynchrony between CS and UCS were increased, showed clear CS+/CS- differences both in time and time-frequency domains. Surprisingly, differential responses to CS+ and CS- were also obtained in Experiment 2, although SON and DN in that experiment were masked and never consciously recognized as meaningful words (recognition rate 0/63 participants). The results are discussed in the context of other ERP conditioning experiments and, particularly, the studies of non-conscious effect on ERP. Several further experiments are suggested to replicate and extend the present findings and to remove the remaining methodological limitations.


Asunto(s)
Encéfalo/fisiología , Condicionamiento Clásico/fisiología , Potenciales Evocados , Estimulación Acústica , Adulto , Percepción Auditiva/fisiología , Potenciales Evocados Auditivos , Femenino , Humanos , Masculino , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...