Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36674575

RESUMEN

G-quadruplexes (G4s), the most widely studied alternative DNA structures, are implicated in the regulation of the key cellular processes. In recent years, their involvement in DNA repair machinery has become the subject of intense research. Here, we evaluated the effect of G4 on the prokaryotic DNA mismatch repair (MMR) pathway from two bacterial sources with different mismatch repair mechanisms. The G4 folding, which competes with the maintenance of double-stranded DNA, is known to be controlled by numerous opposing factors. To overcome the kinetic barrier of G4 formation, we stabilized a parallel G4 formed by the d(GGGT)4 sequence in a DNA plasmid lacking a fragment complementary to the G4 motif. Unlike commonly used isolated G4 structures, our plasmid with an embedded stable G4 structure contained elements, such as a MutH cleavage site, required to initiate the repair process. G4 formation in the designed construct was confirmed by Taq polymerase stop assay and dimethyl sulfate probing. The G4-carrying plasmid, together with control ones (lacking a looped area or containing unstructured d(GT)8 insert instead of the G4 motif), were used as new type models to answer the question of whether G4 formation interferes with DNA cleavage as a basic function of MMR.


Asunto(s)
Reparación de la Incompatibilidad de ADN , G-Cuádruplex , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/metabolismo , ADN/química , Plásmidos/genética , Reparación del ADN
2.
Biomedicines ; 10(8)2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-36009419

RESUMEN

G-quadruplexes (G4s) are a unique class of noncanonical DNAs that play a key role in cellular processes and neoplastic transformation. Herein, we focused on the promoter region of human TERT oncogene, whose product is responsible for the immortality of cancer cells. It has been shown by chemical probing and spectroscopic methods that synthetic 96-nt DNAs modeling the wild-type G-rich strand of the hTERT promoter and its variants with G>A point substitutions corresponding to somatic driver mutations fold into three stacked parallel G4s with sites of local G4 destabilization caused by G>A substitutions in the G4 motif. These models were used to elucidate how the hTERT multiG4 affects the binding affinity and functional responses of two key proteins, MutS and MutL, involved in the initial stage of DNA mismatch repair (MMR) in Escherichiacoli and Neisseriagonorrhoeae with different MMR mechanisms. We have shown for the first time that (i) point substitutions do not affect the effective binding of these proteins to the hTERT G4 structure, and (ii) the endonuclease activity of MutL from N. gonorrhoeae is significantly suppressed by the stable G4 scaffold. It is likely that some of the genomic instability associated with G4 may be related to the blockage of human intrinsic methyl-independent MMR attempting to operate near G4 structures.

3.
Biomolecules ; 11(9)2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34572497

RESUMEN

DNA G-quadruplexes (G4s) are known to be an integral part of the complex regulatory systems in both normal and pathological cells. At the same time, the ability of G4s to impede DNA replication plays a critical role in genome integrity. This review summarizes the results of recent studies of G4-mediated genomic and epigenomic instability, together with associated DNA damage and repair processes. Although the underlying mechanisms remain to be elucidated, it is known that, among the proteins that recognize G4 structures, many are linked to DNA repair. We analyzed the possible role of G4s in promoting double-strand DNA breaks, one of the most deleterious DNA lesions, and their repair via error-prone mechanisms. The patterns of G4 damage, with a focus on the introduction of oxidative guanine lesions, as well as their removal from G4 structures by canonical repair pathways, were also discussed together with the effects of G4s on the repair machinery. According to recent findings, there must be a delicate balance between G4-induced genome instability and G4-promoted repair processes. A broad overview of the factors that modulate the stability of G4 structures in vitro and in vivo is also provided here.


Asunto(s)
Daño del ADN/genética , Reparación del ADN/genética , G-Cuádruplex , Inestabilidad Genómica , Replicación del ADN/genética , Epigénesis Genética
4.
Int J Mol Sci ; 21(22)2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33233554

RESUMEN

DNA mismatch repair (MMR) plays a crucial role in the maintenance of genomic stability. The main MMR protein, MutS, was recently shown to recognize the G-quadruplex (G4) DNA structures, which, along with regulatory functions, have a negative impact on genome integrity. Here, we studied the effect of G4 on the DNA-binding activity of MutS from Rhodobacter sphaeroides (methyl-independent MMR) in comparison with MutS from Escherichia coli (methyl-directed MMR) and evaluated the influence of a G4 on the functioning of other proteins involved in the initial steps of MMR. For this purpose, a new DNA construct was designed containing a biologically relevant intramolecular stable G4 structure flanked by double-stranded regions with the set of DNA sites required for MMR initiation. The secondary structure of this model was examined using NMR spectroscopy, chemical probing, fluorescent indicators, circular dichroism, and UV spectroscopy. The results unambiguously showed that the d(GGGT)4 motif, when embedded in a double-stranded context, adopts a G4 structure of a parallel topology. Despite strong binding affinities of MutS and MutL for a G4, the latter is not recognized by E. coli MMR as a signal for repair, but does not prevent MMR processing when a G4 and G/T mismatch are in close proximity.


Asunto(s)
Reparación de la Incompatibilidad de ADN , ADN Bacteriano/genética , Escherichia coli/genética , G-Cuádruplex , Genoma Bacteriano , Rhodobacter sphaeroides/genética , Sitios de Unión , Roturas del ADN de Doble Cadena , ADN Bacteriano/química , ADN Bacteriano/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas MutL/genética , Proteínas MutL/metabolismo , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/genética , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/metabolismo , Motivos de Nucleótidos , Unión Proteica , Rhodobacter sphaeroides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA