Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Radiother Oncol ; 194: 110197, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38447870

RESUMEN

PURPOSE: A better characterization of the dependence of the tissue sparing effect at ultra-high dose rate (UHDR) on physical beam parameters (dose, dose rate, radiation quality) would be helpful towards a mechanistic understanding of the FLASH effect and for its broader clinical translation. To address this, a comprehensive study on the normal tissue sparing at UHDR using the zebrafish embryo (ZFE) model was conducted. METHODS: One-day-old ZFE were irradiated over a wide dose range (15-95 Gy) in three different beams (proton entrance channel, proton spread out Bragg peak and 30 MeV electrons) at UHDR and reference dose rate. After irradiation the ZFE were incubated for 4 days and then analyzed for four different biological endpoints (pericardial edema, curved spine, embryo length and eye diameter). RESULTS: Dose-effect curves were obtained and a sparing effect at UHDR was observed for all three beams. It was demonstrated that proton relative biological effectiveness and UHDR sparing are both relevant to predict the resulting dose response. Dose dependent FLASH modifying factors (FMF) for ZFE were found to be compatible with rodent data from the literature. It was found that the UHDR sparing effect saturates at doses above âˆ¼ 50 Gy with an FMF of âˆ¼ 0.7-0.8. A strong dose rate dependence of the tissue sparing effect in ZFE was observed. The magnitude of the maximum sparing effect was comparable for all studied biological endpoints. CONCLUSION: The ZFE model was shown to be a suitable pre-clinical high-throughput model for radiobiological studies on FLASH radiotherapy, providing results comparable to rodent models. This underlines the relevance of ZFE studies for FLASH radiotherapy research.


Asunto(s)
Relación Dosis-Respuesta en la Radiación , Electrones , Embrión no Mamífero , Pez Cebra , Animales , Pez Cebra/embriología , Electrones/uso terapéutico , Embrión no Mamífero/efectos de la radiación , Terapia de Protones/métodos , Dosificación Radioterapéutica , Protones , Efectividad Biológica Relativa
2.
Sci Rep ; 13(1): 20611, 2023 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-37996453

RESUMEN

The recently observed FLASH effect describes the observation of normal tissue protection by ultra-high dose rates (UHDR), or dose delivery in a fraction of a second, at similar tumor-killing efficacy of conventional dose delivery and promises great benefits for radiotherapy patients. Dedicated studies are now necessary to define a robust set of dose application parameters for FLASH radiotherapy and to identify underlying mechanisms. These studies require particle accelerators with variable temporal dose application characteristics for numerous radiation qualities, equipped for preclinical radiobiological research. Here we present the DRESDEN PLATFORM, a research hub for ultra-high dose rate radiobiology. By uniting clinical and research accelerators with radiobiology infrastructure and know-how, the DRESDEN PLATFORM offers a unique environment for studying the FLASH effect. We introduce its experimental capabilities and demonstrate the platform's suitability for systematic investigation of FLASH by presenting results from a concerted in vivo radiobiology study with zebrafish embryos. The comparative pre-clinical study was conducted across one electron and two proton accelerator facilities, including an advanced laser-driven proton source applied for FLASH-relevant in vivo irradiations for the first time. The data show a protective effect of UHDR irradiation up to [Formula: see text] and suggests consistency of the protective effect even at escalated dose rates of [Formula: see text]. With the first clinical FLASH studies underway, research facilities like the DRESDEN PLATFORM, addressing the open questions surrounding FLASH, are essential to accelerate FLASH's translation into clinical practice.


Asunto(s)
Neoplasias , Protones , Animales , Humanos , Dosificación Radioterapéutica , Pez Cebra , Neoplasias/radioterapia , Radiobiología
3.
Phys Med Biol ; 68(18)2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37579761

RESUMEN

Objective.Laser plasma-based accelerators (LPAs) of protons can contribute to research of ultra-high dose rate radiobiology as they provide pulse dose rates unprecedented at medical proton sources. Yet, LPAs pose challenges regarding precise and accurate dosimetry due to the high pulse dose rates, but also due to the sources' lower spectral stability and pulsed operation mode. Forin vivomodels, further challenges arise from the necessary small field dosimetry for volumetric dose distributions. For these novel source parameters and intended applications, a dosimetric standard needs to be established.Approach.In this work, we present a dosimetry and beam monitoring framework forin vivoirradiations of small target volumes with LPA protons, solving aforementioned challenges. The volumetric dose distribution in a sample (mean dose value and lateral/depth dose inhomogeneity) is provided by combining two independent dose measurements using radiochromic films (dose rate-independent) and ionization chambers (dose rate-dependent), respectively. The unique feature of the dosimetric setup is beam monitoring with a transmission time-of-flight spectrometer to quantify spectral fluctuations of the irradiating proton pulses. The resulting changes in the depth dose profile during irradiation of anin vivosample are hence accessible and enable pulse-resolved depth dose correction for each dose measurement.Main results.A first successful small animal pilot study using an LPA proton source serves as a testcase for the presented dosimetry approach and proves its performance in a realistic setting.Significance.With several facilities worldwide either setting up or already using LPA infrastructure for radiobiological studies with protons, the importance of LPA-adapted dosimetric frameworks as presented in this work is clearly underlined.


Asunto(s)
Protones , Radiometría , Animales , Proyectos Piloto , Radiometría/métodos , Rayos Láser , Radiobiología , Dosimetría por Película/métodos
4.
Phys Med Biol ; 68(18)2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37607554

RESUMEN

Objective. Local magnetic resonance (MR) signal loss was previously observed during proton beam irradiation of free-floating water phantoms at ambient temperature using a research prototype in-beam magnetic resonance imaging (MRI) scanner. The emergence of this MR signal loss was hypothesised to be dependent on beam-induced convection. The aim of this study was therefore to unravel whether physical conditions allowing the development of convection must prevail for the beam-induced MRI signatures to emerge.Approach. The convection dependence of MRI magnitude signal-based proton beam visualisation was investigated in combined irradiation and imaging experiments using a gradient echo (GE)-based time-of-flight (ToF) angiography pulse sequence, which was first tested for its suitability for proton beam visualisation in free-floating water phantoms at ambient temperature. Subsequently, buoyant convection was selectively suppressed in water phantoms using either mechanical barriers or temperature control of water expansivity. The underlying contrast mechanism was further assessed using sagittal imaging and variation of T1 relaxation time-weighting.Main results. In the absence of convection-driven water flow, weak beam-induced MR signal changes occurred, whereas strong changes did occur when convection was not mechanically or thermally inhibited. Moreover, the degree of signal loss was found to change with the variation of T1-weighting. Consequently, beam-induced MR signal loss in free-floating water phantoms at ambient temperature does not exclusively originate from buoyant convection, but is caused by local composite effects of beam-induced motion and radiation chemistry resulting in a local change in the water T1 relaxation time.Significance. The identification of ToF angiography sequence-based proton beam visualisation in water phantoms to result from composite effects of beam-induced motion and radiation chemistry represents the starting point for the future elucidation of the currently unexplained motion-based MRI contrast mechanism and the identification of the proton beam-induced material change causing T1 relaxation time lengthening.


Asunto(s)
Protones , Radiactividad , Imagen por Resonancia Magnética , Fantasmas de Imagen , Radioquímica
5.
Magn Reson Med ; 90(5): 1776-1788, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37345700

RESUMEN

PURPOSE: The low sensitivity and limitation to water phantoms of convection-dependent MRI magnitude signal-based proton beam visualization hinder its in vivo applicability in MR-integrated proton beam therapy. The purpose of the present study was, therefore, to assess possible contrast mechanisms for MRI phase signal-based proton beam visualization that can potentially be exploited to enhance the sensitivity of the method and extend its applicability to tissue materials. METHODS: To assess whether proton beam-induced magnetic field perturbations, changes in material susceptibility or convection result in detectable changes in the MRI phase signal, water phantom characteristics, experiment timing, and imaging parameters were varied in combined irradiation and imaging experiments using a time-of-flight angiography pulse sequence on a prototype in-beam MRI scanner. Velocity encoding was used to further probe and quantify beam-induced convection. RESULTS: MRI phase signal-based proton beam visualization proved feasible. The observed phase difference contrast was evoked by beam-induced buoyant convection with flow velocities in the mm/s range. Proton beam-induced magnetic field perturbations or changes in magnetic susceptibility did not influence the MRI phase signal. Velocity encoding was identified as a means to enhance the detection sensitivity. CONCLUSION: Because the MRI phase difference contrast observed during proton beam irradiation of water phantoms is caused by beam-induced convection, this method will unlikely be transferable to tightly compartmentalized tissue wherein flow effects are restricted. However, strong velocity encoded pulse sequences were identified as promising candidates for the future development of MRI-based methods for water phantom-based geometric quality assurance in MR-integrated proton beam therapy.


Asunto(s)
Terapia de Protones , Protones , Agua , Imagen por Resonancia Magnética/métodos , Terapia de Protones/métodos , Fantasmas de Imagen
6.
Med Phys ; 50(11): 7294-7303, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37161832

RESUMEN

BACKGROUND: As it promises more precise and conformal radiation treatments, magnetic resonance imaging-integrated proton therapy (MRiPT) is seen as a next step in image guidance for proton therapy. The Lorentz force, which affects the course of the proton pencil beams, presents a problem for beam delivery in the presence of a magnetic field. PURPOSE: To investigate the influence of the 0.32-T perpendicular magnetic field of an MR scanner on the delivery of proton pencil beams inside an MRiPT prototype system. METHODS: An MRiPT prototype comprising of a horizontal pencil beam scanning beam line and an open 0.32-T MR scanner was used to evaluate the impact of the vertical magnetic field on proton beam deflection and dose spot pattern deformation. Three different proton energies (100, 150, and 220 MeV) and two spot map sizes (15 × 15 and 30 × 20 cm2 ) at four locations along the beam path without and with magnetic field were measured. Pencil-beam dose spots were measured using EBT3 films and a 2D scintillation detector. To study the magnetic field effects, a 2D Gaussian fit was applied to each individual dose spot to determine the central position ( X , Y ) $(X,Y)$ , minimum and maximum lateral standard deviation ( σ m i n $\sigma _{min}$ and σ m a x $\sigma _{max}$ ), orientation (θ), and the eccentricity (ε). RESULTS: The dose spots were subjected to three simultaneous effects: (a) lateral horizontal beam deflection, (b) asymmetric trapezoidal deformation of the dose spot pattern, and (c) deformation and rotation of individual dose spots. The strongest effects were observed at a proton energy of 100 MeV with a horizontal beam deflection of 14-186 mm along the beam path. Within the central imaging field of the MR scanner, the maximum relative dose spot size σ m a x $\sigma _{max}$ decreased by up to 3.66%, while σ m i n $\sigma _{min}$ increased by a maximum of 2.15%. The largest decrease and increase in the eccentricity of the dose spots were 0.08 and 0.02, respectively. The spot orientation θ was rotated by a maximum of 5.39°. At the higher proton energies, the same effects were still seen, although to a lesser degree. CONCLUSIONS: The effect of an MRiPT prototype's magnetic field on the proton beam path, dose spot pattern, and dose spot form has been measured for the first time. The findings show that the impact of the MF must be appropriately recognized in a future MRiPT treatment planning system. The results emphasize the need for additional research (e.g., effect of magnetic field on proton beams with range shifters and impact of MR imaging sequences) before MRiPT applications can be employed to treat patients.


Asunto(s)
Terapia de Protones , Protones , Humanos , Terapia de Protones/métodos , Dosificación Radioterapéutica , Imagen por Resonancia Magnética/métodos , Campos Magnéticos , Planificación de la Radioterapia Asistida por Computador
7.
Proc Natl Acad Sci U S A ; 120(23): e2301160120, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37252953

RESUMEN

The main advantage proton beams offer over photon beams in radiation therapy of cancer patients is the dose maximum at their finite range, yielding a reduction in the dose deposited in healthy tissues surrounding the tumor. Since no direct method exists to measure the beam's range during dose delivery, safety margins around the tumor are applied, compromising the dose conformality and reducing the targeting accuracy. Here, we demonstrate that online MRI can visualize the proton beam and reveal its range during irradiation of liquid-filled phantoms. A clear dependence on beam energy and current was found. These results stimulate research into novel MRI-detectable beam signatures and already find application in the geometric quality assurance for magnetic resonance-integrated proton therapy systems currently under development.


Asunto(s)
Neoplasias , Terapia de Protones , Humanos , Protones , Terapia de Protones/métodos , Neoplasias/diagnóstico por imagen , Neoplasias/radioterapia , Imagen por Resonancia Magnética
9.
Phys Med ; 106: 102529, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36657235

RESUMEN

Stray radiation produced by ultra-high dose-rates (UHDR) proton pencil beams is characterized using ASIC-chip semiconductor pixel detectors. A proton pencil beam with an energy of 220 MeV was utilized to deliver dose rates (DR) ranging from conventional radiotherapy DRs up to 270 Gy/s. A MiniPIX Timepix3 detector equipped with a silicon sensor and integrated readout electronics was used. The chip-sensor assembly and chipboard on water-equivalent backing were detached and immersed in the water-phantom. The deposited energy, particle flux, DR, and the linear energy transfer (LET(Si)) spectra were measured in the silicon sensor at different positions both laterally, at different depths, and behind the Bragg peak. At low-intensity beams, the detector is operated in the event-by-event data-driven mode for high-resolution spectral tracking of individual particles. This technique provides precise energy loss response and LET(Si) spectra with radiation field composition resolving power. At higher beam intensities a rescaling of LET(Si) can be performed as the distribution of the LET(Si) spectra exhibits the same characteristics regardless of the delivered DR. The integrated deposited energy and the absorbed dose can be thus measured in a wide range. A linear response of measured absorbed dose was obtained by gradually increasing the delivered DR to reach UHDR beams. Particle tracking of scattered radiation in data-driven mode could be performed at DRs up to 0.27 Gy/s. In integrated mode, the saturation limits were not reached at the measured out-of-field locations up to the delivered DR of over 270 Gy/s. A good agreement was found between measured and simulated absorbed doses.


Asunto(s)
Terapia de Protones , Radiometría , Radiometría/métodos , Protones , Silicio , Transferencia Lineal de Energía , Agua , Terapia de Protones/métodos
10.
Sci Rep ; 12(1): 21488, 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36509788

RESUMEN

Application experiments with laser plasma-based accelerators (LPA) for protons have to cope with the inherent fluctuations of the proton source. This creates a demand for non-destructive and online spectral characterization of the proton pulses, which are for application experiments mostly spectrally filtered and transported by a beamline. Here, we present a scintillator-based time-of-flight (ToF) beam monitoring system (BMS) for the recording of single-pulse proton energy spectra. The setup's capabilities are showcased by characterizing the spectral stability for the transport of LPA protons for two beamline application cases. For the two beamline settings monitored, data of 122 and 144 proton pulses collected over multiple days were evaluated, respectively. A relative energy uncertainty of 5.5% (1[Formula: see text]) is reached for the ToF BMS, allowing for a Monte-Carlo based prediction of depth dose distributions, also used for the calibration of the device. Finally, online spectral monitoring combined with the prediction of the corresponding depth dose distribution in the irradiated samples is demonstrated to enhance applicability of plasma sources in dose-critical scenarios.

11.
Radiother Oncol ; 175: 193-196, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36030933

RESUMEN

The influence of different average and bunch dose rates in electron beams on the FLASH effect was investigated. The present study measures O2 content in water at different beam pulse patterns and finds strong correlation with biological data, strengthening the hypothesis of radical-related mechanisms as a reason for the FLASH effect.


Asunto(s)
Oxígeno , Agua , Humanos , Dosificación Radioterapéutica
12.
Radiother Oncol ; 173: 49-54, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35661675

RESUMEN

BACKGROUND AND PURPOSE: Continuing recent experiments at the research electron accelerator ELBE at the Helmholtz-Zentrum Dresden-Rossendorf the influence of beam pulse structure on the Flash effect was investigated. MATERIALS AND METHODS: The proton beam pulse structure of an isochronous cyclotron (UHDRiso) and a synchrocyclotron (UHDRsynchro) was mimicked at ELBE by quasi-continuous electron bunches at 13 MHz delivering mean dose rates of 287 Gy/s and 177 Gy/s and bunch dose rates of 106Gy/s and 109 Gy/s, respectively. For UHDRsynchro, 40 ms macro pulses at a frequency of 25 Hz superimposed the bunch delivery. For comparison, a maximum beam intensity (2.5 × 105 Gy/s mean and ∼109 Gy/s bunch dose rate) and a reference irradiation (of ∼8 Gy/min mean dose rate) were applied. Radiation induced changes were assessed in zebrafish embryos over four days post irradiation. RESULTS: Relative to the reference a significant protecting Flash effect was observed for all electron beam pulse regimes with less severe damage the higher the mean dose rate of the electron beam. Accordingly, the macro pulsing induced prolongation of treatment time at UHDRsynchro regime reduces the protecting effect compared to the maximum regime delivered at same bunch but higher mean dose rate. The Flash effect of the UHDRiso regime was confirmed at a clinical isochronous cyclotron comparing the damage induced by proton beams delivered at 300 Gy/s and ∼9 Gy/min. CONCLUSION: The recent findings indicate that the mean dose rate or treatment time are decisive for the normal tissue protecting Flash effect in zebrafish embryo.


Asunto(s)
Protones , Pez Cebra , Animales , Electrones , Dosificación Radioterapéutica
13.
Radiother Oncol ; 172: 134-139, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35605747

RESUMEN

BACKGROUND AND PURPOSE: The relative biological effectiveness (RBE) varies along the treatment field. However, in clinical practice, a constant RBE of 1.1 is assumed, which can result in undesirable side effects. This study provides an accurate overview of current clinical practice for considering proton RBE in Europe. MATERIALS AND METHODS: A survey was devised and sent to all proton therapy centres in Europe that treat patients. The online questionnaire consisted of 39 questions addressing various aspects of RBE consideration in clinical practice, including treatment planning, patient follow-up and future demands. RESULTS: All 25 proton therapy centres responded. All centres prescribed a constant RBE of 1.1, but also applied measures (except for one eye treatment centre) to counteract variable RBE effects such as avoiding beams stopping inside or in front of an organ at risk and putting restrictions on the minimum number and opening angle of incident beams for certain treatment sites. For the future, most centres (16) asked for more retrospective or prospective outcome studies investigating the potential effect of the effect of a variable RBE. To perform such studies, 18 centres asked for LET and RBE calculation and visualisation tools developed by treatment planning system vendors. CONCLUSION: All European proton centres are aware of RBE variability but comply with current guidelines of prescribing a constant RBE. However, they actively mitigate uncertainty and risk of side effects resulting from increased RBE by applying measures and restrictions during treatment planning. To change RBE-related clinical guidelines in the future more clinical data on RBE are explicitly demanded.


Asunto(s)
Terapia de Protones , Humanos , Transferencia Lineal de Energía , Estudios Prospectivos , Terapia de Protones/métodos , Protones , Planificación de la Radioterapia Asistida por Computador/métodos , Efectividad Biológica Relativa , Estudios Retrospectivos , Encuestas y Cuestionarios
14.
Acta Oncol ; 61(2): 206-214, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34686122

RESUMEN

BACKGROUND: Clinical data suggest that the relative biological effectiveness (RBE) in proton therapy (PT) varies with linear energy transfer (LET). However, LET calculations are neither standardized nor available in clinical routine. Here, the status of LET calculations among European PT institutions and their comparability are assessed. MATERIALS AND METHODS: Eight European PT institutions used suitable treatment planning systems with their center-specific beam model to create treatment plans in a water phantom covering different field arrangements and fulfilling commonly agreed dose objectives. They employed their locally established LET simulation environments and procedures to determine the corresponding LET distributions. Dose distributions D1.1 and DRBE assuming constant and variable RBE, respectively, and LET were compared among the institutions. Inter-center variability was assessed based on dose- and LET-volume-histogram parameters. RESULTS: Treatment plans from six institutions fulfilled all clinical goals and were eligible for common analysis. D1.1 distributions in the target volume were comparable among PT institutions. However, corresponding LET values varied substantially between institutions for all field arrangements, primarily due to differences in LET averaging technique and considered secondary particle spectra. Consequently, DRBE using non-harmonized LET calculations increased inter-center dose variations substantially compared to D1.1 and significantly in mean dose to the target volume of perpendicular and opposing field arrangements (p < 0.05). Harmonizing LET reporting (dose-averaging, all protons, LET to water or to unit density tissue) reduced the inter-center variability in LET to the order of 10-15% within and outside the target volume for all beam arrangements. Consequentially, inter-institutional variability in DRBE decreased to that observed for D1.1. CONCLUSION: Harmonizing the reported LET among PT centers is feasible and allows for consistent multi-centric analysis and reporting of tumor control and toxicity in view of a variable RBE. It may serve as basis for harmonized variable RBE dose prescription in PT.


Asunto(s)
Transferencia Lineal de Energía , Terapia de Protones , Humanos , Método de Montecarlo , Protones , Planificación de la Radioterapia Asistida por Computador , Efectividad Biológica Relativa
15.
Radiother Oncol ; 163: 177-184, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34480959

RESUMEN

Clinical treatment with protons uses the concept of relative biological effectiveness (RBE) to convert the absorbed dose into an RBE-weighted dose that equals the dose for radiotherapy with photons causing the same biological effect. Currently, in proton therapy a constant RBE of 1.1 is generically used. However, empirical data indicate that the RBE is not constant, but increases at the distal edge of the proton beam. This increase in RBE is of concern, as the clinical impact is still unresolved, and clinical studies demonstrating a clinical effect of an increased RBE are emerging. Within the European Particle Therapy Network (EPTN) work package 6 on radiobiology and RBE, a workshop was held in February 2020 in Manchester with one day of discussion dedicated to the impact of proton RBE in a clinical context. Current data on RBE effects, patient outcome and modelling from experimental as well as clinical studies were presented and discussed. Furthermore, representatives from European clinical proton therapy centres, who were involved in patient treatment, laid out their current clinical practice on how to consider the risk of a variable RBE in their centres. In line with the workshop, this work considers the actual impact of RBE issues on patient care in proton therapy by reviewing preclinical data on the relation between linear energy transfer (LET) and RBE, current clinical data sets on RBE effects in patients, and applied clinical strategies to manage RBE uncertainties. A better understanding of the variability in RBE would allow development of proton treatments which are safer and more effective.


Asunto(s)
Terapia de Protones , Humanos , Transferencia Lineal de Energía , Radiobiología , Efectividad Biológica Relativa , Incertidumbre
16.
Med Phys ; 48(7): 3982-3990, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33948958

RESUMEN

PURPOSE: To investigate experimentally, if FLASH irradiation depletes oxygen within water for different radiation types such as photons, protons, and carbon ions. METHODS: This study presents measurements of the oxygen consumption in sealed, 3D-printed water phantoms during irradiation with x-rays, protons, and carbon ions at varying dose rates up to 340 Gy/s. The oxygen measurement was performed using an optical sensor allowing for noninvasive measurements. RESULTS: Oxygen consumption in water only depends on dose, dose rate, and linear energy transfer (LET) of the irradiation. The total amount of oxygen depleted per 10 Gy was found to be 0.04% atm - 0.18% atm for 225 kV photons, 0.04% atm - 0.25% atm for 224 MeV protons, and 0.09% atm - 0.17% atm for carbon ions. Consumption depends on dose rate by an inverse power law and saturates for higher dose rates because of self-interactions of radicals. Higher dose rates yield lower oxygen consumption. No total depletion of oxygen was found for clinical doses. CONCLUSIONS: FLASH irradiation does consume oxygen, but not enough to deplete all the oxygen present. For higher dose rates, less oxygen was consumed than at standard radiotherapy dose rates. No total depletion was found for any of the analyzed radiation types for 10 Gy dose delivery using FLASH.


Asunto(s)
Fotones , Protones , Carbono , Iones , Oxígeno
17.
Radiother Oncol ; 158: 7-12, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33587970

RESUMEN

BACKGROUND AND PURPOSE: In consequence of a previous study, where no protecting proton Flash effect was found for zebrafish embryos, potential reasons and requirements for inducing a Flash effect should be investigated with higher pulse dose rate and partial oxygen pressure (pO2) as relevant parameters. MATERIALS AND METHODS: The experiments were performed at the research electron accelerator ELBE, whose variable pulse structure enables dose delivery as electron Flash and quasi-continuously (reference irradiation). Zebrafish embryos were irradiated with ~26 Gy either continuously at a dose rate of ~6.7 Gy/min (reference) or by 1441 electron pulses within 111 µs at a pulse dose rate of 109 Gy/s and a mean dose rate of 105Gy/s, respectively. Using the OxyLite system to measure the pO2 a low- (pO2 ≤ 5 mmHg) and a high-pO2 group were defined on basis of the oxygen depletion kinetics in sealed embryo samples. RESULTS: A protective Flash effect was seen for most endpoints ranging from 4 % less reduction in embryo length to about 20-25% less embryos with spinal curvature and pericardial edema, relative to reference irradiation. The reduction of pO2 below atmospheric levels (148 mmHg) resulted in higher protection, which was however more pronounced in the low-pO2 group. CONCLUSION: The Flash experiment at ELBE showed that the zebrafish embryo model is appropriate for studying the radiobiological response of high dose rate irradiation. The applied high pulse dose rate was confirmed as important beam parameter as well as the pivotal role of pO2 during irradiation.


Asunto(s)
Electrones , Pez Cebra , Animales , Oxígeno , Protones
18.
Phys Med ; 80: 134-150, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33181444

RESUMEN

UHDpulse - Metrology for advanced radiotherapy using particle beams with ultra-high pulse dose rates is a recently started European Joint Research Project with the aim to develop and improve dosimetry standards for FLASH radiotherapy, very high energy electron (VHEE) radiotherapy and laser-driven medical accelerators. This paper gives a short overview about the current state of developments of radiotherapy with FLASH electrons and protons, very high energy electrons as well as laser-driven particles and the related challenges in dosimetry due to the ultra-high dose rate during the short radiation pulses. We summarize the objectives and plans of the UHDpulse project and present the 16 participating partners.


Asunto(s)
Electrones , Radiometría , Rayos Láser , Aceleradores de Partículas , Protones , Radioterapia , Dosificación Radioterapéutica , Radioterapia de Alta Energía
19.
Anticancer Res ; 40(11): 6123-6135, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33109550

RESUMEN

BACKGROUND/AIM: The importance of hadron therapy in the cancer management is growing. We aimed to refine the biological effect detection using a vertebrate model. MATERIALS AND METHODS: Embryos at 24 and 72 h postfertilization were irradiated at the entrance plateau and the mid spread-out Bragg peak of a 150 MeV proton beam and with reference photons. Radiation-induced DNA double-strand breaks (DSB) and histopathological changes of the eye, muscles and brain were evaluated; deterioration of specific organs (eye, yolk sac, body) was measured. RESULTS: More and longer-lasting DSBs occurred in eye and muscle cells due to proton versus photon beams, albeit in different numbers. Edema, necrosis and tissue disorganization, (especially in the eye) were observed. Dose-dependent morphological deteriorations were detected at ≥10 Gy dose levels, with relative biological effectiveness between 0.99±0.07 (length) and 1.12±0.19 (eye). CONCLUSION: Quantitative assessment of radiation induced changes in zebrafish embryos proved to be beneficial for the radiobiological characterization of proton beams.


Asunto(s)
Fotones , Protones , Pez Cebra/fisiología , Animales , Encéfalo/efectos de la radiación , Daño del ADN , Modelos Animales de Enfermedad , Relación Dosis-Respuesta en la Radiación , Embrión no Mamífero/efectos de la radiación , Ojo/patología , Ojo/efectos de la radiación , Cinética , Tamaño de los Órganos/efectos de la radiación , Efectividad Biológica Relativa , Saco Vitelino/patología , Saco Vitelino/efectos de la radiación , Pez Cebra/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...