Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(9): e30235, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38707471

RESUMEN

This study investigated the effectiveness of incorporating sulphur (S) with nitrogen (N) and phosphorus (P) for enhancing microbial activity in diesel-contaminated soil during ex-situ bioremediation. While N and P amendments are commonly used to stimulate indigenous microorganisms, the potential benefits of adding S have received less attention. The study found that historically contaminated soil with a moderate concentration of total petroleum hydrocarbons (TPH; 1270 mg/kg) did not have nutrient limitation, and incubation temperature was found to be more critical for enhancing microbial activity. However, soil spiked with an additional 5000 mg/kg of diesel showed increased activity following NP and NPS amendment. Interestingly, NPS amendment at 10 °C resulted in higher microbial activity than at 20 °C, indicating the potential for a tailored nutrient amendment approach to optimize bioremediation in cold conditions. Overall, this study suggests that incorporating S with N and P can enhance microbial activity in diesel-contaminated soil during ex-situ bioremediation. Furthermore, the study highlights the importance of considering incubation temperature in designing a nutrient amendment approach for bioremediation, especially in cold conditions. These findings can guide the design and implementation of future effective bioremediation strategies for petroleum hydrocarbon-contaminated soil.

2.
Environ Monit Assess ; 196(1): 38, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38097866

RESUMEN

Soil fertility, soil health and environmental management through the estimation of background concentration of potentially toxic elements is required for environmental safety. This study aims at investigating the concentration, fertility and potential health risks of some d-block metals (Ti, V, Fe, Mn, and Mo) in some agricultural soils, and establishes the relationship between the metals and some soil properties. Eight elevation ranges resulted from the digital elevation models of the study area; two in Ishibori (NG1, NG2), three each in Agoi-Ibami (CG1, CG2, CG3) and Mfamosing (SG1, SG2 and SG3). One soil profile pit was sunk along each of the elevations. Thirty-five composite soil samples were collected at 0-30, 30-60, 60-90, 90-120, 120-150, 150-180 and 180-200 cm depending on soil depth. Only the profile means of Mn (660.82 ± 612.89 mg/kg) and Mo (2.61 ± 0.73 mg/kg) exceeded permissible concentrations and would pose threats to the environment. Also, the concentrations of the d-block metals exceeded permissible values in Ishibori making them prone to toxicity. The metals were irregularly distributed with depth; however, Mn and Fe were concentrated in the subsurface soils. Clay and sand contents correlated positively and negatively, respectively with all the d-block metals at p < 0.05. The linear model was more efficient in estimating V and Mo via soil properties with adjusted R2 of 33 - 67% for the metals. In conclusion, agricultural activities and geology may influence the accumulation of d-block metals, hence the call for environmental monitoring to curtail metals' assimilation by crops. HIGHLIGHTS: • Mn and Mo threaten the environment the most. • Soils in the Southern Guinea Savannah are most prone to d-block metals contamination. • BD, pH, Mg, and CEC are the best predictors of d-block metals in the soils. • The linear model was best performing in the estimation of V and Mo, respectively.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Suelo/química , Metales Pesados/análisis , Nigeria , Monitoreo del Ambiente/métodos , Contaminantes del Suelo/análisis
3.
J Environ Manage ; 345: 118671, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37506448

RESUMEN

Global warming is expected to cause hotter, drier summers and more extreme weather events including heat waves and droughts. A little understood aspect of this is its effects on the efficacy of fertilisers and related nutrient losses into the environment. We explored the effects of high soil temperature (>25 °C) and low soil moisture (<40% water filled pore space; WFPS) on emissions of ammonia (NH3) and nitrous oxide (N2O) following application of urea to soil and the efficacy of urease inhibitors (UI) in slowing N losses. We incubated soil columns at three temperatures (15, 25, 35 °C) and three soil moisture contents (20, 40, 60% WFPS) with urea applied on the soil surface with and without UIs, and measured NH3 and N2O emissions using chambers placed over the columns. Four fertiliser treatments were applied in triplicate in a randomised complete block design: (1) urea; (2) urea with a single UI (N-(n-butyl) thiophosphoric triamide (NBPT); (3) urea with two UI (NBPT and N-(n-propyl) thiophosphoric triamide; NPPT); and (4) a zero N control. Inclusion of UI with urea, relative to urea alone, delayed and reduced peak NH3 emissions. However, the efficacy of UI was reduced with increasing temperature and decreasing soil moisture. Cumulative NH3 emission did not differ between the two UI treatments for a given set of conditions and was reduced by 22-87% compared with urea alone. Maximum cumulative NH3 emission occurred at 35 °C and 20% WFPS, accounting for 31% of the applied N for the urea treatment and 25%, on average for the UI treatments. Urease inhibitors did not influence N2O emissions; however, there were interactive impacts of temperature and moisture, with higher cumulative emissions at 40% WFPS and 15 and 25 °C accounting for 1.85-2.62% of the applied N, whereas at 35 °C there was greater N2O emission at 60% WFPS. Our results suggest that inclusion of UI with urea effectively reduces NH3 losses at temperatures reaching 35 °C, although overall effectiveness decreases with increasing temperature, particularly under low soil moisture conditions.


Asunto(s)
Gases , Nitrógeno , Gases/análisis , Nitrógeno/análisis , Fertilizantes/análisis , Calor , Ureasa , Suelo , Amoníaco/análisis , Óxido Nitroso/análisis , Urea , Agricultura/métodos
4.
Microb Ecol ; 86(4): 2211-2230, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37280438

RESUMEN

Microbial catabolic activity (MCA) defined as the degrading activity of microorganisms toward various organic compounds for their growth and energy is commonly used to assess soil microbial function potential. For its measure, several methods are available including multi-substrate-induced respiration (MSIR) measurement which allow to estimate functional diversity using selected carbon substrates targeting specific biochemical pathways. In this review, the techniques used to measure soil MCA are described and compared with respect to their accuracy and practical use. Particularly the efficiency of MSIR-based approaches as soil microbial function indicators was discussed by (i) showing their sensitivity to different agricultural practices including tillage, amendments, and cropping systems and (ii) by investigating their relationship with soil enzyme activities and some soil chemical properties (pH, soil organic carbon, cation exchange capacity). We highlighted the potential of these MSIR-based MCA measurements to improve microbial inoculant composition and to determine their potential effects on soil microbial functions. Finally, we have proposed ideas for improving MCA measurement notably through the use of molecular tools and stable isotope probing which can be combined with classic MSIR methods. Graphical abstract describing the interrelation between the different parts and the concepts developed in the review.


Asunto(s)
Inoculantes Agrícolas , Suelo , Suelo/química , Carbono , Agricultura/métodos , Microbiología del Suelo
5.
Sci Total Environ ; 892: 164720, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37302607

RESUMEN

This study aimed to investigate the potential of three bioamendments (rice husk biochar, wheat straw biochar, and spent mushroom compost) to enhance microbial degradation of crude oil in saline soil. A soil microcosm experiment was conducted, comparing the response of soil microorganisms to crude oil under saline (1 % NaCl) and non-saline conditions. The soils were amended with different bioamendments at varying concentrations (2.5 % or 5 %), and degradation rates were monitored over a 120-day period at 20 °C. The results showed that the bioamendments significantly influenced the degradation of total petroleum hydrocarbons (TPH) in both non-saline and saline soils by 67 % and 18 % respectively. Non-saline soils exhibited approximately four times higher TPH biodegradation compared to saline soils. Among the bioamendments, rice husk biochar and spent mushroom compost had the greatest impact on biodegradation in saline soil, while wheat straw and rice husk biochar combined with spent mushroom compost showed the most significant effects in non-saline soil. The study also revealed that the bioamendments facilitated changes in the microbial community structure, particularly in the treatments with rice husk biochar and wheat straw biochar. Actinomycetes and fungi were found to be more tolerant to soil salinity, especially in the treatments with rice husk biochar and wheat straw biochar. Additionally, the production of CO2, indicating microbial activity, was highest (56 % and 60 %) in the treatments combining rice husk biochar or wheat straw biochar with spent mushroom compost in non-saline soil, while in saline soil rice husk biochar treatment (50 %) was the highest. Overall, this research demonstrates that the application of bioamendments, particularly rice husk biochar and wheat straw biochar combined with spent mushroom compost, can effectively enhance the biodegradation of crude oil in saline soil. These findings highlight the potential of such bioamendments as green and sustainable solutions for soil pollution, especially in the context of climate change-induced impacts on high-salinity soils, including coastal soils.


Asunto(s)
Agaricales , Oryza , Petróleo , Contaminantes del Suelo , Biodegradación Ambiental , Salinidad , Suelo/química , Carbón Orgánico/química , Triticum , Contaminantes del Suelo/análisis
6.
Environ Monit Assess ; 195(5): 628, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37126114

RESUMEN

Lithological characteristics interact with other factors of soil formation to define soil genesis. This becomes more interesting as data on the mineral and elemental oxide components of soils developed from limestone are rarely available in the humid tropical environment. The present study investigated the elemental oxide content, forms of sesquioxides, and clay mineral species in some limestone soils. Soil samples were obtained from three (3) crestal soil profile pits and analyzed for elemental content by the use of an X-ray fluorescence spectrometer, and sesquioxide forms by inductively coupled plasma-mass spectrometer. Analyses were done in triplicates. The mineralogy of the clay fraction was determined on the A, B, and C horizon samples using an X-ray diffraction technique. The occurrence of SiO2 (203-277 g/kg), Al2O3 (65-105 g/kg), and Fe2O3 (14-95 g/kg) in substantial amounts over MnO2, ZrO2, and TiO2 with negligible quantities of CaO suggested comparatively more developed soils in the Agoi Ibami and Mfamosing tropical rainforests. Crystalline form of Fe was dominant over amorphous form, with indications of the co-migration of dithionite Fe with clay to the B horizons of the soils. Quartz, kaolinite, montmorillonite, and chlorite-vermiculite-montmorillonite interlayered minerals dominated the clay mineralogy of the studied soils. Mineral transformation places the soils at the transitory stage from the intermediate to the complete stage of soil development. The expanding clay minerals are most likely to increase plant nutrient adsorption and soil fertility status to accommodate the cultivation of a wider range of crops.


Asunto(s)
Carbonato de Calcio , Suelo , Suelo/química , Arcilla , Carbonato de Calcio/análisis , Bentonita/análisis , Bentonita/química , Compuestos de Manganeso/análisis , Dióxido de Silicio/análisis , Monitoreo del Ambiente , Óxidos/análisis , Minerales/análisis
7.
Front Microbiol ; 12: 642587, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33776974

RESUMEN

The profound negative effect of inorganic chemical fertilizer application on rhizobacterial diversity has been well documented using 16S rRNA gene amplicon sequencing and predictive metagenomics. We aimed to measure the function and relative abundance of readily culturable putative plant growth-promoting rhizobacterial (PGPR) isolates from wheat root soil samples under contrasting inorganic fertilization regimes. We hypothesized that putative PGPR abundance will be reduced in fertilized relative to unfertilized samples. Triticum aestivum cv. Cadenza seeds were sown in a nutrient depleted agricultural soil in pots treated with and without Osmocote® fertilizer containing nitrogen-phosphorous-potassium (NPK). Rhizosphere and rhizoplane samples were collected at flowering stage (10 weeks) and analyzed by culture-independent (CI) amplicon sequence variant (ASV) analysis of rhizobacterial DNA as well as culture-dependent (CD) techniques. Rhizosphere and rhizoplane derived microbiota culture collections were tested for plant growth-promoting traits using functional bioassays. In general, fertilizer addition decreased the proportion of nutrient-solubilizing bacteria (nitrate, phosphate, potassium, iron, and zinc) isolated from rhizocompartments in wheat whereas salt tolerant bacteria were not affected. A "PGPR" database was created from isolate 16S rRNA gene sequences against which total amplified 16S rRNA soil DNA was searched, identifying 1.52% of total community ASVs as culturable PGPR isolates. Bioassays identified a higher proportion of PGPR in non-fertilized samples [rhizosphere (49%) and rhizoplane (91%)] compared to fertilized samples [rhizosphere (21%) and rhizoplane (19%)] which constituted approximately 1.95 and 1.25% in non-fertilized and fertilized total community DNA, respectively. The analyses of 16S rRNA genes and deduced functional profiles provide an in-depth understanding of the responses of bacterial communities to fertilizer; our study suggests that rhizobacteria that potentially benefit plants by mobilizing insoluble nutrients in soil are reduced by chemical fertilizer addition. This knowledge will benefit the development of more targeted biofertilization strategies.

9.
Phage (New Rochelle) ; 1(3): 149-157, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36147827

RESUMEN

Background: Although bacteriophages see a revival for specifically removing undesired bacteria, there is still much uncertainty about how to achieve the most rapid and long-lasting clearance. Materials and Methods: This study investigated the lysis kinetics of three distinct environmental coliphages, reproducibly forming different plaque sizes (big, medium, and small). Lysis performance by individual phages was compared with the one obtained after simultaneous or sequential addition of all three phages. Kinetics was monitored by density absorbance or by flow cytometry, with the latter having the advantage of providing higher sensitivity. Results: Plaque size happened to correlate with lysis kinetics in liquid suspensions, with phages producing big (phage B), medium (phage M), and small (phage S) plaques showing maximal bacterial clearance under the chosen conditions within ∼6, 12, and 18 h, respectively. Use of a phage cocktail (all three phages added simultaneously) resulted in slower initial lysis compared with the fastest lysing phage with the greatest plaque size alone, but it showed longer efficacy in suppression. When adding phages sequentially, overall lysis kinetics could be influenced by administering phages at different time points. The lowest bacterial concentration after 36 h was obtained when administering phages in the sequence S, M, and B although this combination initially took the longest to achieve bacterial clearance. Conclusions: Results support that timing and order of phage addition can modulate strength and duration of bacterial suppression and, thus, influence the overall success of phage treatment.

10.
New Phytol ; 225(5): 2140-2151, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31569277

RESUMEN

Dispersal limitation, biotic interactions, and environmental filters interact to drive plant and fungal community assembly, but their combined effects are rarely investigated. This study examines how different heathland plant and fungal colonization scenarios realized via three biotic treatments - addition of mature heathland-derived sod, addition of hay, and no additions - affect soil fungal community development over 6 yr along a manipulated pH gradient in a large-scale experiment starting from an agricultural, topsoil removed state. Our results show that both biotic and abiotic (pH) treatments had a persistent influence on the development of fungal communities, but that sod additions diminished the effect of abiotic treatments through time. Analysis of correlation networks between soil fungi and plants suggests that the reduced effect of pH in the sod treatment, where both soil and plant propagules were added, might be due to plant-fungal interactions since the sod additions caused stronger, more specific, and more consistent connections compared with the no addition treatment. Based on these results, we suggest that the initial availability of heathland fungal and plant taxa, which reinforce each other, can significantly steer further fungal community development to an alternative configuration, overriding the otherwise prominent effect of abiotic (pH) conditions.


Asunto(s)
Micobioma , Suelo , Hongos , Plantas , Microbiología del Suelo
11.
Ecol Appl ; 29(6): e01946, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31173423

RESUMEN

There are increasing calls to provide greenspace in urban areas, yet the ecological quality, as well as quantity, of greenspace is important. Short mown grassland designed for recreational use is the dominant form of urban greenspace in temperate regions but requires considerable maintenance and typically provides limited habitat value for most taxa. Alternatives are increasingly proposed, but the biodiversity potential of these is not well understood. In a replicated experiment across six public urban greenspaces, we used nine different perennial meadow plantings to quantify the relative roles of floristic diversity and height of sown meadows on the richness and composition of three taxonomic groups: plants, invertebrates, and soil microbes. We found that all meadow treatments were colonized by plant species not sown in the plots, suggesting that establishing sown meadows does not preclude further locally determined grassland development if management is appropriate. Colonizing species were rarer in taller and more diverse plots, indicating competition may limit invasion rates. Urban meadow treatments contained invertebrate and microbial communities that differed from mown grassland. Invertebrate taxa responded to changes in both height and richness of meadow vegetation, but most orders were more abundant where vegetation height was longer than mown grassland. Order richness also increased in longer vegetation and Coleoptera family richness increased with plant diversity in summer. Microbial community composition seems sensitive to plant species composition at the soil surface (0-10 cm), but in deeper soils (11-20 cm) community variation was most responsive to plant height, with bacteria and fungi responding differently. In addition to improving local residents' site satisfaction, native perennial meadow plantings can produce biologically diverse grasslands that support richer and more abundant invertebrate communities, and restructured plant, invertebrate, and soil microbial communities compared with short mown grassland. Our results suggest that diversification of urban greenspace by planting urban meadows in place of some mown amenity grassland is likely to generate substantial biodiversity benefits, with a mosaic of meadow types likely to maximize such benefits.


Asunto(s)
Biodiversidad , Pradera , Ecosistema , Plantas , Suelo
12.
Environ Pollut ; 211: 399-405, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26799000

RESUMEN

One of the main pathways by which engineered nanoparticles (ENPs) enter the environment is through land application of waste water treatment plant (WWTP) sewage sludges. WWTP sludges, enriched with Ag and ZnO ENPs or their corresponding soluble metal salts during anaerobic digestion and subsequently mixed with soil (targeting a final concentration of 1400 and 140 mg/kg for Zn and Ag, respectively), were subjected to 6 months of ageing and leaching in lysimeter columns outdoors. Amounts of Zn and Ag leached were very low, accounting for <0.3% and <1.4% of the total Zn and Ag, respectively. No differences in total leaching rates were observed between treatments of Zn or Ag originally input to WWTP as ENP or salt forms. Phospholipid fatty acid profiling indicated a reduction in the fungal component of the soil microbial community upon metal exposure. However, overall, the leachate composition and response of the soil microbial community following addition of sewage sludge enriched either with ENPs or metal salts was very similar.


Asunto(s)
Agricultura , Microbiología del Suelo , Contaminantes del Suelo/análisis , Eliminación de Residuos Líquidos , Aguas Residuales/química , Nanopartículas , Aguas del Alcantarillado/química , Suelo/química , Agua
13.
Environ Sci Pollut Res Int ; 20(2): 1041-9, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23007947

RESUMEN

Nanosized zero-valent iron (nZVI) is an effective land remediation tool, but there remains little information regarding its impact upon and interactions with the soil microbial community. nZVI stabilised with sodium carboxymethyl cellulose was applied to soils of three contrasting textures and organic matter contents to determine impacts on soil microbial biomass, phenotypic (phospholipid fatty acid (PLFA)), and functional (multiple substrate-induced respiration (MSIR)) profiles. The nZVI significantly reduced microbial biomass by 29 % but only where soil was amended with 5 % straw. Effects of nZVI on MSIR profiles were only evident in the clay soils and were independent of organic matter content. PLFA profiling indicated that the soil microbial community structure in sandy soils were apparently the most, and clay soils the least, vulnerable to nZVI suggesting a protective effect imparted by clays. Evidence of nZVI bactericidal effects on Gram-negative bacteria and a potential reduction of arbuscular mycorrhizal fungi are presented. Data imply that the impact of nZVI on soil microbial communities is dependent on organic matter content and soil mineral type. Thereby, evaluations of nZVI toxicity on soil microbial communities should consider context. The reduction of AM fungi following nZVI application may have implications for land remediation.


Asunto(s)
Hierro/farmacología , Nanopartículas del Metal , Microbiología del Suelo , Silicatos de Aluminio , Arcilla , Ácidos Grasos/análisis , Bacterias Gramnegativas/efectos de los fármacos , Micorrizas/efectos de los fármacos , Fosfolípidos/química , Dióxido de Silicio , Contaminantes del Suelo
14.
FEMS Microbiol Ecol ; 79(1): 229-39, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22029533

RESUMEN

In this study, the microbial community within compost, emitted into the airstream, downwind and upwind from a composting facility was characterized and compared through phospholipid fatty acid analysis and 16S rRNA gene analysis using denaturing gradient gel electrophoresis and bar-coded pyrosequencing techniques. All methods used suggested that green-waste composting had a significant impact upon bioaerosol community composition. Daily variations of the on-site airborne community showed how specific site parameters such as compost process activity and meteorological conditions affect bioaerosol communities, although more data are required to qualify and quantify the causes for these variations. A notable feature was the dominance of Pseudomonas in downwind samples, suggesting that this genus can disperse downwind in elevated abundances. Thirty-nine phylotypes were homologous to plant or human phylotypes containing pathogens and were found within compost, on-site and downwind microbial communities. Although the significance of this finding in terms of potential health impact was beyond the scope of this study, it clearly illustrated the potential of molecular techniques to improve our understanding of the impact that green-waste composting emissions may have on the human health.


Asunto(s)
Aerosoles/análisis , Microbiología del Aire , Eliminación de Residuos/métodos , Bacterias/clasificación , Bacterias/genética , Bacterias/crecimiento & desarrollo , Biodiversidad , Monitoreo del Ambiente , Humanos , Suelo , Microbiología del Suelo
15.
Water Res ; 44(1): 69-76, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19775718

RESUMEN

The application of membrane bioreactors (MBRs) to brine denitrification for ion exchange regeneration has been studied. The developed culture was capable of complete brine denitrification at 50 gNaCl.l(-1). Denitrification reduced to c.60% and c.70% when salinity was respectively increased to 75 and 100g.l(-1), presumed to be due to reduced growth rate and the low imposed solids retention time (10 days). Polysaccharide secretion was not induced by stressed cells following salt shocking, implying that cell lysis did not occur. Fouling propensity, monitored by critical flux, was steady at 12-15l.m(-2).h(-1) during salinity shocking and after brine recirculation, indicating that the system was stable following perturbation. Low molecular weight polysaccharide physically adsorbed onto the nitrate selective anion exchange resin during regeneration reducing exchange capacity by c.6.5% when operating up to complete exhaustion. However, based on a breakthrough threshold of 10 mgNO(3)(-)-N.l(-1) the exchange capacity was comparative to that determined when using freshly produced brine for regeneration. It was concluded that a denitrification MBR was an appropriate technology for IEX spent brine recovery and reuse.


Asunto(s)
Reactores Biológicos , Intercambio Iónico , Membranas Artificiales , Nitratos/química , Sales (Química)/química , Purificación del Agua/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...