Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
Sci Rep ; 14(1): 7484, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553543

RESUMEN

We investigate the vibrational and magnetic properties of thin layers of chromium tribromide (CrBr3) with a thickness ranging from three to twenty layers (3-20 L) revealed by the Raman scattering (RS) technique. Systematic dependence of the RS process efficiency on the energy of the laser excitation is explored for four different excitation energies: 1.96 eV, 2.21 eV, 2.41 eV, and 3.06 eV. Our characterization demonstrates that for 12 L CrBr3, 3.06 eV excitation could be considered resonant with interband electronic transitions due to the enhanced intensity of the Raman-active scattering resonances and the qualitative change in the Raman spectra. Polarization-resolved RS measurements for 12 L CrBr3 and first-principles calculations allow us to identify five observable phonon modes characterized by distinct symmetries, classified as the A g and E g modes. The evolution of phonon modes with temperature for a 16 L CrBr3 encapsulated in hexagonal boron nitride flakes demonstrates alterations of phonon energies and/or linewidths of resonances indicative of a transition between the paramagnetic and ferromagnetic state at Curie temperature ( T C ≈ 50  K). The exploration of the effects of thickness on the phonon energies demonstrated small variations pronounces exclusively for the thinnest layers in the vicinity of 3-5 L. We propose that this observation can be due to the strong localization in the real space of interband electronic excitations, limiting the effects of confinement for resonantly excited Raman modes to atomically thin layers.

2.
Zootaxa ; 5419(2): 151-188, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38480330

RESUMEN

Xenophyophores are large, agglutinated foraminifera that dominate the benthic megafauna in some parts of the deep sea. Here, we describe an assemblage of largely fragmentary specimens from the Clarion-Clipperton Zone (CCZ), an area of the eastern abyssal Pacific hosting large, commercially significant deposits of polymetallic nodules. We recognised 18 morphospecies of which eight yielded DNA sequences. These include two new genera and three new species, Claraclippia seminuda gen. & sp. nov., Stereodiktyoma mollis gen. & sp. nov., and Aschemonella tani sp. nov., three that are assigned to known species, Abyssalia foliformis, Aschemonella monilis and Shinkaiya contorta, and two assigned to open nomenclature forms Abyssalia aff. foliformis and Stannophyllum aff. granularium. An additional ten forms are represented only by morphology. The following seven are placed in known genera, species and open-nomenclature forms: Aschemonella? sp., Homogammina sp., Psammina multiloculata, P. aff. multiloculata, P. aff. limbata form 1 sensu Gooday et al., 2018, P. aff. limbata form 2 sensu Gooday et al., 2018, and Stannophyllum spp. The other three could not be identified to genus level. This new collection brings the total of described and undescribed species and morphotypes from the CCZ to 27 and 70, respectively, reinforcing the already high diversity of xenophyophores known from this part of the Pacific.


Asunto(s)
Foraminíferos , Poecilia , Animales , Foraminíferos/genética
3.
PLoS One ; 19(2): e0298440, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38422100

RESUMEN

Environmental DNA metabarcoding reveals a vast genetic diversity of marine eukaryotes. Yet, most of the metabarcoding data remain unassigned due to the paucity of reference databases. This is particularly true for the deep-sea meiofauna and eukaryotic microbiota, whose hidden diversity is largely unexplored. Here, we tackle this issue by using unique DNA signatures to classify unknown metabarcodes assigned to deep-sea foraminifera. We analyzed metabarcoding data obtained from 311 deep-sea sediment samples collected in the Clarion-Clipperton Fracture Zone, an area of potential polymetallic nodule exploitation in the Eastern Pacific Ocean. Using the signatures designed in the 37F hypervariable region of the 18S rRNA gene, we were able to classify 802 unassigned metabarcodes into 61 novel lineages, which have been placed in 27 phylogenetic clades. The comparison of new lineages with other foraminiferal datasets shows that most novel lineages are widely distributed in the deep sea. Five lineages are also present in the shallow-water datasets; however, phylogenetic analysis of these lineages separates deep-sea and shallow-water metabarcodes except in one case. While the signature-based classification does not solve the problem of gaps in reference databases, this taxonomy-free approach provides insight into the distribution and ecology of deep-sea species represented by unassigned metabarcodes, which could be useful in future applications of metabarcoding for environmental monitoring.


Asunto(s)
ADN Ambiental , Foraminíferos , Filogenia , ADN Ribosómico , Bases de Datos Factuales , Foraminíferos/genética , Agua
4.
J Hazard Mater ; 466: 133652, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38309158

RESUMEN

This study investigates the ecotoxicological effects of BDE-209, a persistent organic pollutant (POP) prevalent in Kuwait's coastal-industrial areas, on benthic foraminiferal communities. We conducted a mesocosm experiment in which we exposed benthic foraminiferal communities sampled from the coastal-industrial areas of Kuwait to a gradient of BDE-209 concentrations (0.01 to 20 mg/kg). The impact of exposure was assessed using live-staining and metabarcoding techniques. Despite the significantly different taxonomic compositions detected by the two techniques, our results show that BDE-209 significantly affects foraminiferal communities, with moderately high concentrations leading to reduced α-diversity and considerable taxonomic shifts in both molecular and morphological assemblages. At concentrations of 10 and 20 mg/kg, no living foraminifera were detected after 8 weeks, suggesting a threshold for their survival under BDE-209 exposure. The parallel responses of molecular and morphological communities confirm the reliability of both assessment methods. This study is the first to investigate the reaction of eukaryotic communities, specifically foraminifera, to POPs such as BDE-209, generating valuable insights that have the potential to enhance field studies and aid the refinement of sediment quality guidelines.


Asunto(s)
Foraminíferos , Sedimentos Geológicos , Éteres Difenilos Halogenados , Foraminíferos/genética , Biodiversidad , Reproducibilidad de los Resultados , Monitoreo del Ambiente/métodos
5.
Mar Environ Res ; 195: 106340, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38232436

RESUMEN

In recent years, the region surrounding Sepetiba Bay (SB; SE Brazil) has become a hub of intense urban expansion and economic exploitation in response to ore transport and industrial and port activities. As a result, contaminants have been introduced into the bay, leading to an overall worsening of the environmental quality. The present work applies for the first time a foraminiferal morphology-based approach (M) and eDNA-based metabarcoding sequencing (G), along with geochemical data to assess the ecological quality status (EcoQS) in the SB. Principal component analysis shows that the eDNA and morphospecies diversity as well as most of the taxa relative abundance decline in response to the environmental stress (ES) gradient related to total organic carbon (TOC) and metal pollution. Based on ecological indices, Exp(H'bc) (G), Exp(H'bc) (M), foraminifera ATZI marine biotic index (Foram-AMBI), Foram Stress Index (FSI), and geochemical indices (TOC and Potential Ecological Risk Index), the lowest values of EcoQS (i.e., bad to moderate) are inferred in the innermost part of the SB. Despite minor discrepancies among the six EcoQS indices, an agreement has been found for 63% of the stations. To improve the agreement between the ecological indices, it is necessary to fill the gap in species ecology; information on the ecology of many species is still unknown. This work reinforces the importance of molecular analysis and morphological methods in environmental impact studies and confirms the reliability of foraminiferal metabarcoding in EcoQS assessment. This is the first study evaluating the EcoQS in the South Atlantic by using combined foraminiferal eDNA metabarcoding with morphological data.


Asunto(s)
Foraminíferos , Foraminíferos/genética , Monitoreo del Ambiente/métodos , Brasil , Bahías , Reproducibilidad de los Resultados , Biodiversidad , Sedimentos Geológicos/química
6.
ACS Omega ; 8(47): 44745-44750, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38046332

RESUMEN

We investigate the feasibility of the epitaxial growth of a three-dimensional semiconductor on a two-dimensional substrate. In particular, we report for the first time the molecular beam epitaxy growth of cadmium telluride (CdTe) quantum wells on hexagonal boron nitride (hBN). The presence of the quantum wells is confirmed by photoluminescence measurements conducted at helium temperatures. Growth of the quantum wells on two-dimensional, almost perfectly flat hBN appears to be very different from growth on bulk substrates; in particular, it requires 70-100 °C lower temperatures.

7.
Phys Rev Lett ; 130(8): 081501, 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36898106

RESUMEN

We present the first direct and nonperturbative computation of the graviton spectral function in quantum gravity. This is achieved with the help of a novel Lorentzian renormalization group approach, combined with a spectral representation of correlation functions. We find a positive graviton spectral function, showing a massless one-graviton peak and a multigraviton continuum with an asymptotically safe scaling for large spectral values. We also study the impact of a cosmological constant. Further steps to investigate scattering processes and unitarity in asymptotically safe quantum gravity are indicated.

8.
Environ Int ; 172: 107738, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36641836

RESUMEN

The Anthropocene is characterized by dramatic ecosystem changes driven by human activities. The impact of these activities can be assessed by different geochemical and paleontological proxies. However, each of these proxies provides only a fragmentary insight into the effects of anthropogenic impacts. It is highly challenging to reconstruct, with a holistic view, the state of the ecosystems from the preindustrial period to the present day, covering all biological components, from prokaryotes to multicellular eukaryotes. Here, we used sedimentary ancient DNA (sedaDNA) archives encompassing all trophic levels of biodiversity to reconstruct the two century-natural history in Bagnoli-Coroglio (Gulf of Pozzuoli, Tyrrhenian Sea), one of the most polluted marine-coastal sites in Europe. The site was characterized by seagrass meadows and high eukaryotic diversity until the beginning of the 20th century. Then, the ecosystem completely changed, with seagrasses and associated fauna as well as diverse groups of planktonic and benthic protists being replaced by low diversity biota dominated by dinophyceans and infaunal metazoan species. The sedaDNA analysis revealed a five-phase evolution of the area, where changes appear as the result of a multi-level cascade effect of impacts associated with industrial activities, urbanization, water circulation and land-use changes. The sedaDNA allowed to infer reference conditions that must be considered when restoration actions are to be implemented.


Asunto(s)
Biodiversidad , Ecosistema , Humanos , Animales , Biota , Europa (Continente) , Actividades Humanas , Sedimentos Geológicos
9.
Geobiology ; 21(1): 133-150, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36259453

RESUMEN

Arctic marine biodiversity is undergoing rapid changes due to global warming and modifications of oceanic water masses circulation. These changes have been demonstrated in the case of mega- and macrofauna, but much less is known about their impact on the biodiversity of smaller size organisms, such as foraminifera that represent a main component of meiofauna in the Arctic. Several studies analyzed the distribution and diversity of Arctic foraminifera. However, all these studies are based exclusively on the morphological identification of specimens sorted from sediment samples. Here, we present the first assessment of Arctic foraminifera diversity based on metabarcoding of sediment DNA samples collected in fjords and open sea areas in the Svalbard Archipelago. We obtained a total of 5,968,786 reads that represented 1384 amplicon sequence variants (ASVs). More than half of the ASVs (51.7%) could not be assigned to any group in the reference database suggesting a high genetic novelty of Svalbard foraminifera. The sieved and unsieved samples resolved comparable communities, sharing 1023 ASVs, comprising over 97% of reads. Our analyses show that the foraminiferal assemblage differs between the localities, with communities distinctly separated between fjord and open sea stations. Each locality was characterized by a specific assemblage, with only a small overlap in the case of open sea areas. Our study demonstrates a clear pattern of the influence of water masses on the structure of foraminiferal communities. The stations situated on the western coast of Svalbard that are strongly influenced by warm and salty Atlantic water (AW) are characterized by much higher diversity than stations in the northern and eastern part, where the impact of AW is less pronounced. This high diversity and specificity of Svalbard foraminifera associated with water mass distribution indicate that the foraminiferal metabarcoding data can be very useful for inferring present and past environmental conditions in the Arctic.


Asunto(s)
Foraminíferos , Foraminíferos/genética , Foraminíferos/química , Sedimentos Geológicos/química , Agua , Svalbard , Biodiversidad
10.
Eur J Protistol ; 86: 125932, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36347189

RESUMEN

Single-chambered (monothalamous) foraminifera are poorly known compared to their multichambered relatives. In this first study of monothalamids from Greenland, we describe one new genus and two new species belonging to different clades from the Nuuk fjord system. Nujappikia idaliae Gooday & Holzmann gen. nov. sp. nov. (Clade Y) has a bottle-shaped test terminating in a single aperture located on a short neck. The flexible wall is basically organic but with a very fine agglutinated veneer. Bathyallogromia kalaallita Gooday & Holzmann sp. nov. (Clade C) has a broadly ovate test with an organic wall and a mound-like apertural structure. It is larger and genetically distinct from the two other Bathyallogromia species, both from the Southern Ocean. A survey of the morphological diversity of monothalamids in our samples revealed 49 morphospecies, of which 19, including the two new species, yielded DNA sequences. Five were assigned to the genera Bathysiphon, (Clade BM), Micrometula. (Clade BM), Psammophaga. (Clade E), Hippocrepinella (Clade D) and Crithionina (Clade J). The remaining twelve represented unknown taxa branching in clades A, C, F, and Y and one new clade. Our results add to growing evidence that monothalamids are common and diverse in fjords and other high-latitude settings.


Asunto(s)
Foraminíferos , Rhizaria , Foraminíferos/genética , Rhizaria/genética , Groenlandia , Filogenia , Análisis de Secuencia de ADN
11.
PeerJ ; 10: e13952, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36093332

RESUMEN

Foraminifera are a species-rich phylum of rhizarian protists that are highly abundant in most marine environments. Molecular methods such as metabarcoding have revealed a high, yet undescribed diversity of Foraminifera. However, so far only one molecular marker, the 18S ribosomal RNA, was available for metabarcoding studies on Foraminifera. Primers that allow amplification of foraminiferal mitochondrial cytochrome oxidase I (COI) and identification of Foraminifera species were recently published. Here we test the performance of these primers for the amplification of whole foraminiferal communities, and compare their performance to that of the highly degenerate LerayXT primers, which amplify the same COI region in a wide range of eukaryotes. We applied metabarcoding to 48 samples taken along three transects spanning a North Sea beach in the Netherlands from dunes to the low tide level, and analysed both sediment samples and meiofauna samples, which contained taxa between 42 µm and 1 mm in body size obtained by decantation from sand samples. We used single-cell metabarcoding (Girard et al., 2022) to generate a COI reference library containing 32 species of Foraminifera, and used this to taxonomically annotate our community metabarcoding data. Our analyses show that the highly degenerate LerayXT primers do not amplify Foraminifera, while the Foraminifera primers are highly Foraminifera- specific, with about 90% of reads assigned to Foraminifera and amplifying taxa from all major groups, i.e., monothalamids, Globothalamea, and Tubothalamea. We identified 176 Foraminifera ASVs and found a change in Foraminifera community composition along the beach transects from high tide to low tide level, and a dominance of single-chambered monothalamid Foraminifera. Our results highlight that COI metabarcoding can be a powerful tool for assessing Foraminiferal communities.


Asunto(s)
Complejo IV de Transporte de Electrones , Foraminíferos , Complejo IV de Transporte de Electrones/genética , Biodiversidad , Código de Barras del ADN Taxonómico/métodos , Foraminíferos/genética , Cartilla de ADN/genética
12.
Eur J Protistol ; 85: 125911, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35988528

RESUMEN

The foraminiferal order Carterinida is characterized by agglutinated tests consisting of calcareous spicules. Four species have so far been described from the tropical Pacific and the Caribbean Sea. We report here the first occurrence of Carterina from the Southeastern Levantine Shelf of the Mediterranean Sea. Based on molecular and morphological results, we describe Carterina labinea sp. nov., which is characterized by a trochospiral test with a conical, tapered spiral side and a concave umbilical side. The test is composed of elongate fusiform calcareous spicules. Tests have a mean diameter of 720 µm, which is twice the vertical height, and spicules vary in length and width from 112/15 µm to 73/14 µm. Our results show that the genus Carterina extends its distribution beyond tropical Seas and might be more widely distributed than previously thought. Moreover, the appearance of the new species in the study area suggests it is a new colonizer as continuous biomonitoring studies in the area show that it is absent in sediment samples taken before 2020. Our results highlight the importance of ongoing monitoring programs in high-risk basins such as the Levantine to gain more information about the biodiversity changes and improve environmental conservation of Eastern Mediterranean littoral areas progressively colonized by tropical species.


Asunto(s)
Foraminíferos , Especies Introducidas , Biodiversidad , Mar Mediterráneo
13.
Sci Rep ; 12(1): 14169, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35986062

RESUMEN

The temperature evolution of the resonant Raman scattering from high-quality bilayer 2H-MoS[Formula: see text] encapsulated in hexagonal BN flakes is presented. The observed resonant Raman scattering spectrum as initiated by the laser energy of 1.96 eV, close to the A excitonic resonance, shows rich and distinct vibrational features that are otherwise not observed in non-resonant scattering. The appearance of 1st and 2nd order phonon modes is unambiguously observed in a broad range of temperatures from 5 to 320 K. The spectrum includes the Raman-active modes, i.e. E[Formula: see text]([Formula: see text]) and A[Formula: see text]([Formula: see text]) along with their Davydov-split counterparts, i.e. E[Formula: see text]([Formula: see text]) and B[Formula: see text]([Formula: see text]). The temperature evolution of the Raman scattering spectrum brings forward key observations, as the integrated intensity profiles of different phonon modes show diverse trends. The Raman-active A[Formula: see text]([Formula: see text]) mode, which dominates the Raman scattering spectrum at T = 5 K quenches with increasing temperature. Surprisingly, at room temperature the B[Formula: see text]([Formula: see text]) mode, which is infrared-active in the bilayer, is substantially stronger than its nominally Raman-active A[Formula: see text]([Formula: see text]) counterpart.

14.
Eur J Protistol ; 85: 125909, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35907388

RESUMEN

Based on molecular and morphological data, we describe three new genera and four new species of monothalamids from the sublittoral zone (21-250 m) in South Georgia fjords that belong to different monothalamid clades. Limaxia alba gen. nov. sp. nov. (Clade A) has an elongate, subcylindrical test, 359-688 µm long, with some detritus attached to the organic wall. Hilla argentea gen. nov. sp. nov. (Clade Y) has a cylindrical, finely agglutinated test, 535-755 µm long. Pseudoconqueria lenticularis gen. nov. sp. nov. branches separately. It has a spindle-shaped, finely agglutinated test, 280-574 µm long. Bathyallogromia olivacea sp. nov. (Clade C) has an ovate organic-walled test, 369-433 µm long. We present the first genetic data on two monothalamid species originally described from South Georgia, Hippocrepinella alba (Clade C) and Hippocrepinella hirudinea (Clade D), as well as a single sequence for C. delacai (Clade J) originally described from McMurdo Sound, Antarctica. In addition, we report nine undescribed species branching in six different monothalamid clades (A, B, BM, C, J, Y), eight of them sampled around South Georgia and one collected from the Falkland Islands near Stanley.


Asunto(s)
Foraminíferos , Regiones Antárticas , Islas Malvinas , Foraminíferos/genética , Filogenia
15.
Mol Phylogenet Evol ; 174: 107546, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35690380

RESUMEN

Foraminifera, classified in the supergroup Rhizaria, are a common and highly diverse group of mainly marine protists. Despite their evolutionary and ecological importance, only limited genomic data (one partial genome and nine transcriptomic datasets) have been published for this group. Foraminiferal molecular phylogeny is largely based on 18S rRNA gene sequence analysis. However, due to highly variable evolutionary rates of substitution in ribosomal genes plus the existence of intragenomic variation at this locus, the relationships between and within foraminiferal classes remain uncertain. We analyze transcriptomic data from 28 species, adding 19 new species to the previously published dataset, including members of the strongly under-represented class Monothalamea. A phylogenomic reconstruction of Rhizaria, rooted with alveolates and stramenopiles, based on 199 genes and 68 species supports the monophyly of Foraminifera and their sister relationship to Polycystinea. The phylogenomic tree of Foraminifera is very similar to the 18S rRNA tree, with the paraphyletic single-chambered monothalamids giving rise to the multi-chambered Tubothalamea and Globothalamea. Within the Monothalamea, our analyses confirm the monophyly of the giant, deep-sea xenophyophores that branch within clade C and indicate the basal position of monothalamous clades D and E. The multi-chambered Globothalamea are monophyletic and comprise the paraphyletic Textulariida and monophyletic Rotaliida. Our phylogenomic analyses support major evolutionary trends of Foraminifera revealed by ribosomal phylogenies and reinforce their current higher-level classification.


Asunto(s)
Foraminíferos , Rhizaria , Evolución Biológica , Foraminíferos/genética , Filogenia , ARN Ribosómico 18S/genética , Rhizaria/genética , Transcriptoma
16.
Phys Rev E ; 105(4-2): 045315, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35590556

RESUMEN

Path integrals with complex actions are encountered for many physical systems ranging from spin- or mass-imbalanced atomic gases and graphene to quantum chromodynamics at finite density to the nonequilibrium evolution of quantum systems. Many computational approaches have been developed for tackling the sign problem emerging for complex actions. Among these, complex Langevin dynamics has the appeal of general applicability. One of its key challenges is the potential convergence of the dynamics to unphysical fixed points. The statistical sampling process at such a fixed point is not based on the physical action and hence leads to wrong predictions. Moreover, its unphysical nature is hard to detect due to the implicit nature of the process. In the present work we set up a general approach based on a Markov chain Monte Carlo scheme in an extended state space. In this approach we derive an explicit real sampling process for generalized complex Langevin dynamics. Subject to a set of constraints, this sampling process is the physical one. These constraints originate from the detailed-balance equations satisfied by the Monte Carlo scheme. This allows us to rederive complex Langevin dynamics from a new perspective and establishes a framework for the explicit construction of new sampling schemes for complex actions.

17.
Sci Total Environ ; 833: 155093, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35421459

RESUMEN

The rapid urbanization and industrialization of Kuwait and the consequent effluent discharges into marine environments have resulted in a degradation of water and sediment quality in the coastal marine ecosystems such as in the Kuwait Bay. This study investigates the ecological response of benthic foraminifera (protists) to environmental stress in the Kuwait Bay. The traditional morphological approach was compared to the innovative environmental DNA (eDNA) metabarcoding to evaluate the ecological quality status (EcoQS). Forty-six surface sediment samples were collected from selected stations in the Kuwait Bay. To detect the pollution gradient, environmental parameters from water (e.g., salinity, pH, dissolved oxygen) and sediment (e.g., grain-size, trace metals, total organic carbon, total petroleum hydrocarbons) were measured at each station. Although the foraminiferal assemblages were different in the morphological and molecular datasets, the species turnover was congruent and statistically significant. Diversity-based biotic indices derived from both morphological and metabarcoding approaches, reflect the environmental stress gradient (i.e., organic and metal contaminations) in the Kuwait Bay. The lowest values of EcoQS (i.e., bad to poor) are found in the innermost part (i.e., Sulaibikhat Bay and Ras Kazmah), while higher EcoQS values occur in the outer part of the bay. This study constitutes the first attempt to apply the foraminiferal metabarcoding to assess the EcoQS within the Arabian Gulf and presents its advantages compared to the conventional morphological approach.


Asunto(s)
Foraminíferos , Bahías , Ecosistema , Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , Kuwait , Agua
18.
Chemosphere ; 298: 134239, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35292278

RESUMEN

Environmental (e)DNA metabarcoding holds great promise for biomonitoring and ecotoxicological applications. However, few studies have compared the performance of eDNA versus eRNA metabarcoding in assessing organismal response to marine pollution, in experimental conditions. Here, we performed a chromium (Cr)-spiked mesocosm experimental test on benthic foraminiferal community to investigate the effects on species diversity by analysing both eDNA and eRNA metabarcoding data across different Cr concentrations in the sediment. Foraminiferal diversity in the eRNA data showed a significant negative correlation with the Cr concentration in the sediment, while a positive response was observed in the eDNA data. The foraminiferal OTUs exhibited a higher turnover rate in eRNA than in the eDNA-derived community. Furthermore, in the eRNA samples, OTUs abundance was significantly affected by the Cr gradient in the sediment (Pseudo-R2 = 0.28, p = 0.05), while no significant trend was observed in the eDNA samples. The correlation between Cr concentration and foraminiferal diversity in eRNA datasets was stronger when the less abundant OTUs (<100 reads) were removed and the analyses were conducted exclusively on OTUs shared between eRNA and eDNA datasets. This indicates the importance of metabarcoding data filtering to capture ecological impacts, in addition to using the putatively active organisms in the eRNA dataset. The comparative analyses on foraminiferal diversity revealed that eRNA-based metabarcoding can better assess the response to heavy metal exposure in presence of subtle concentrations of the pollutant. Furthermore, our results suggest that to unlock the full potential for ecosystem assessment, eDNA and eRNA should be studied in parallel to control for potential sequence artifacts in routine ecosystem surveys.


Asunto(s)
Ecosistema , Foraminíferos , Biodiversidad , Cromo/toxicidad , Código de Barras del ADN Taxonómico/métodos , Monitoreo del Ambiente/métodos , Foraminíferos/genética , ARN
19.
Sci Adv ; 8(5): eabj9309, 2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35119936

RESUMEN

Remote deep-ocean sediment (DOS) ecosystems are among the least explored biomes on Earth. Genomic assessments of their biodiversity have failed to separate indigenous benthic organisms from sinking plankton. Here, we compare global-scale eukaryotic DNA metabarcoding datasets (18S-V9) from abyssal and lower bathyal surficial sediments and euphotic and aphotic ocean pelagic layers to distinguish plankton from benthic diversity in sediment material. Based on 1685 samples collected throughout the world ocean, we show that DOS diversity is at least threefold that in pelagic realms, with nearly two-thirds represented by abundant yet unknown eukaryotes. These benthic communities are spatially structured by ocean basins and particulate organic carbon (POC) flux from the upper ocean. Plankton DNA reaching the DOS originates from abundant species, with maximal deposition at high latitudes. Its seafloor DNA signature predicts variations in POC export from the surface and reveals previously overlooked taxa that may drive the biological carbon pump.

20.
Integr Environ Assess Manag ; 18(3): 655-663, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34019727

RESUMEN

Deep-sea biodiversity, a source of critical ecological functions and ecosystem services, is increasingly subject to the threat of disturbance from existing practices (e.g., fishing, waste disposal, oil and gas extraction) as well as emerging industries such as deep-seabed mining. Current scientific tools may not be adequate for monitoring and assessing subsequent changes to biodiversity. In this paper, we evaluate the scientific and budgetary trade-offs associated with morphology-based taxonomy and metabarcoding approaches to biodiversity surveys in the context of nascent deep-seabed mining for polymetallic nodules in the Clarion-Clipperton Zone, the area of most intense interest. For the dominant taxa of benthic meiofauna, we discuss the types of information produced by these methods and use cost-effectiveness analysis to compare their abilities to yield biological and ecological data for use in environmental assessment and management. On the basis of our evaluation, morphology-based taxonomy is less cost-effective than metabarcoding but offers scientific advantages, such as the generation of density, biomass, and size structure data. Approaches that combine the two methods during the environmental assessment phase of commercial activities may facilitate future biodiversity monitoring and assessment for deep-seabed mining and for other activities in remote deep-sea habitats, for which taxonomic data and expertise are limited. Integr Environ Assess Manag 2022;18:655-663. © 2021 SETAC.


Asunto(s)
Biodiversidad , Ecosistema , Biomasa , Minería , Encuestas y Cuestionarios
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...