Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ultramicroscopy ; 233: 113458, 2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34929560

RESUMEN

The xenon plasma focused ion beam and scanning electron microscopy (PFIB-SEM) system is a promising tool for 3D tomography of nano-scale materials, including nanotextured black silicon (BSi), whose topography is difficult to measure with conventional microscopy techniques. Advantages of PFIB-SEM include high material removal rates, precise control of milling parameters and automated slice-and-view procedures. However, there is no universal sample preparation procedure nor is there an established ideal workflow for the PFIB-SEM slice-and-view process. This work demonstrates that specimen preparation, including the orientation of the volume of interest, is critical for the quality of the final reconstructed 3D model. It thoroughly explores three unique configurations incrementally optimized for higher total throughput. All three sampling configurations are applied to a resin-embedded BSi sample to determine the most favourable workflow and highlight each approach's advantages and disadvantages. The reconstructed 3D models of the BSi surface obtained are shown to be qualitatively closer to the topography measured directly by SEM. The height distribution data extracted from the rendered 3D models reveal a higher structure depth compared to that obtained from an atomic force microscopy measurement. Furthermore, the work demonstrates how samples with different rigidity react to long-term ion-beam interaction, as both amorphous (resin) and crystalline (Si) material is present in the tested specimen. This study improves the understanding of sample-beam interaction and broadens the utility of the 3D PFIB-SEM for more complicated sample structures.

2.
Ultramicroscopy ; 218: 113084, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32745881

RESUMEN

This paper demonstrates an improved method to accurately extract the surface morphology of black silicon (BSi). The method is based on an automated Xe+ plasma focused ion beam (PFIB) and scanning electron microscope (SEM) tomography technique. A comprehensive new sample preparation method is described and shown to minimize the PFIB artifacts induced by both the top surface sample-PFIB interaction and the non-uniform material density. An optimized post-image processing procedure is also described that ensures the accuracy of the reconstructed 3D surface model. The application of these new methods is demonstrated by applying them to extract the surface topography of BSi formed by reactive ion etching (RIE) consisting of 2 µm tall needles. An area of 320 µm2 is investigated with a controlled slice thickness of 10 nm. The reconstructed 3D model allows the extraction of critical roughness characteristics, such as height distribution, correlation length, and surface enhancement ratio. Furthermore, it is demonstrated that the particular surface studied contains regions in which under-etching has resulted in overhanging structures, which would not have been identified with other surface topography techniques. Such overhanging structures can be present in a broad range of BSi surfaces, including BSi surfaces formed by RIE and metal catalyst chemical etching (MCCE). Without proper measurement, the un-detected overhangs would result in the underestimation of many critical surface characteristics, such as absolute surface area, electrochemical reactivity and light-trapping.

3.
Opt Express ; 22 Suppl 2: A402-15, 2014 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-24922250

RESUMEN

We report a study of the optical properties of silicon moth-eye structures using a custom-made fully automated broadband spectroscopic reflectometry system (goniometer). This measurement system is able to measure specular reflectance as a function of wavelength, polar incidence angle and azimuth orientation angle, from normal to near-parallel polar incidence angle. The system uses a linear polarized broadband super-continuum laser light source. It is shown that a moth-eye structure composed of a regular array of protruding silicon rods, with finite sidewall angle reduces reflectance and sensitivity to incident wavelength in comparison to truly cylindrical rods with perpendicular sidewalls. It is also shown that moth-eye structures have omnidirectional reflectance properties in response to azimuth orientation of the sample. The importance of applying the reflectometer setup to study the optical properties of solar cell antireflective structures is highlighted.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...