Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 901, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38296938
2.
Nature ; 621(7978): 264-265, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37648827

Asunto(s)
Animales
3.
Nat Commun ; 13(1): 2660, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35551195

RESUMEN

Many fish and marine organisms are responding to our planet's changing climate by shifting their distribution. Such shifts can drive international conflicts and are highly problematic for the communities and businesses that depend on these living marine resources. Advances in climate prediction mean that in some regions the drivers of these shifts can be forecast up to a decade ahead, although forecasts of distribution shifts on this critical time-scale, while highly sought after by stakeholders, have yet to materialise. Here, we demonstrate the application of decadal-scale climate predictions to the habitat and distribution of marine fish species. We show statistically significant forecast skill of individual years that outperform baseline forecasts 3-10 years ahead; forecasts of multi-year averages perform even better, yielding correlation coefficients in excess of 0.90 in some cases. We also demonstrate that the habitat shifts underlying conflicts over Atlantic mackerel fishing rights could have been foreseen. Our results show that climate predictions can provide information of direct relevance to stakeholders on the decadal-scale. This tool will be critical in foreseeing, adapting to and coping with the challenges of a changing future climate, particularly in the most ocean-dependent nations and communities.


Asunto(s)
Cambio Climático , Perciformes , Animales , Organismos Acuáticos , Clima , Ecosistema
4.
Ecol Evol ; 11(23): 16786-16805, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34938473

RESUMEN

Warming of the oceans and shifts in the timing of annual key events are likely to cause behavioral changes in species showing a high degree of site fidelity. While this is well studied in terrestrial systems, there are fewer examples from the marine environment. Sandeel (Ammodytes marinus) is a small eel-shaped teleost fish with strong behavioral attachment to sandy habitats in which they are buried from late summer through winter. When spring arrives, the sandeel emerge to feed during the day for several of months before returning to the sand for overwintering refuge.Using fisheries data from the North Sea, we investigated whether catch rates reflect the timing of emergence and if seasonal patterns are related to temperature and primary production.Catch per unit effort (CPUE) was used to describe sandeel emergence. We developed indicators of the relative timing of the emergence from the winter sand refuge and the subsequent growth period. Different modeling approaches were used to investigate the relationship with bottom temperature and primary production.Variation in emergence behavior was correlated with variation in sea bottom temperature. Warmer years were characterized by earlier emergence. Significant warming over the last three decades was evident in all sandeel habitats in the North Sea throughout most of their adult life history, though no net shift in the phenology of emergence was detected. Minimum temperature during spring was a better predictor of emergence behavior than, for example, degree days.This study emphasizes how temperature-induced changes in behavior may have implications for predators and fisheries of sandeel. The method can be applied to other species for which the timing of exploitation (i.e., fisheries) and species life history are well matched.

5.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34583987

RESUMEN

With the majority of the global human population living in coastal regions, correctly characterizing the climate risk that ocean-dependent communities and businesses are exposed to is key to prioritizing the finite resources available to support adaptation. We apply a climate risk analysis across the European fisheries sector to identify the most at-risk fishing fleets and coastal regions and then link the two analyses together. We employ an approach combining biological traits with physiological metrics to differentiate climate hazards between 556 populations of fish and use these to assess the relative climate risk for 380 fishing fleets and 105 coastal regions in Europe. Countries in southeast Europe as well as the United Kingdom have the highest risks to both fishing fleets and coastal regions overall, while in other countries, the risk-profile is greater at either the fleet level or at the regional level. European fisheries face a diversity of challenges posed by climate change; climate adaptation, therefore, needs to be tailored to each country, region, and fleet's specific situation. Our analysis supports this process by highlighting where and what adaptation measures might be needed and informing where policy and business responses could have the greatest impact.


Asunto(s)
Cambio Climático , Explotaciones Pesqueras , Aclimatación , Ecosistema , Europa (Continente) , Medición de Riesgo
6.
Proc Natl Acad Sci U S A ; 117(34): 20363-20371, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32817527

RESUMEN

The ocean is a lifeline for human existence, but current practices risk severely undermining ocean sustainability. Present and future social-ecological challenges necessitate the maintenance and development of knowledge and action by stimulating collaboration among scientists and between science, policy, and practice. Here we explore not only how such collaborations have developed in the Nordic countries and adjacent seas but also how knowledge from these regions contributes to an understanding of how to obtain a sustainable ocean. Our collective experience may be summarized in three points: 1) In the absence of long-term observations, decision-making is subject to high risk arising from natural variability; 2) in the absence of established scientific organizations, advice to stakeholders often relies on a few advisors, making them prone to biased perceptions; and 3) in the absence of trust between policy makers and the science community, attuning to a changing ocean will be subject to arbitrary decision-making with unforeseen and negative ramifications. Underpinning these observations, we show that collaboration across scientific disciplines and stakeholders and between nations is a necessary condition for appropriate actions.

7.
8.
Glob Chang Biol ; 26(3): 1319-1337, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31701595

RESUMEN

A major challenge in understanding the response of populations to climate change is to separate the effects of local drivers acting independently on specific populations, from the effects of global drivers that impact multiple populations simultaneously and thereby synchronize their dynamics. We investigated the environmental drivers and the demographic mechanisms of the widespread decline in marine survival rates of Atlantic salmon (Salmo salar) over the last four decades. We developed a hierarchical Bayesian life cycle model to quantify the spatial synchrony in the marine survival of 13 large groups of populations (called stock units, SU) from two continental stock groups (CSG) in North America (NA) and Southern Europe (SE) over the period 1971-2014. We found strong coherence in the temporal variation in postsmolt marine survival among the 13 SU of NA and SE. A common North Atlantic trend explains 37% of the temporal variability of the survivals for the 13 SU and declines by a factor of 1.8 over the 1971-2014 time series. Synchrony in survival trends is stronger between SU within each CSG. The common trends at the scale of NA and SE capture 60% and 42% of the total variance of temporal variations, respectively. Temporal variations of the postsmolt survival are best explained by the temporal variations of sea surface temperature (SST, negative correlation) and net primary production indices (PP, positive correlation) encountered by salmon in common domains during their marine migration. Specifically, in the Labrador Sea/Grand Banks for populations from NA, 26% and 24% of variance is captured by SST and PP, respectively and in the Norwegian Sea for populations from SE, 21% and 12% of variance is captured by SST and PP, respectively. The findings support the hypothesis of a response of salmon populations to large climate-induced changes in the North Atlantic simultaneously impacting populations from distant continental habitats.


Asunto(s)
Cambio Climático , Salmo salar , Animales , Océano Atlántico , Teorema de Bayes , Europa (Continente) , América del Norte , Noruega
9.
Nat Ecol Evol ; 3(3): 416-423, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30742109

RESUMEN

Marine plankton have been conspicuously affected by recent climate change, responding with profound spatial relocations and shifts in the timing of their seasonal occurrence. These changes directly affect the global carbon cycle by altering the transport of organic material from the surface ocean to depth, with consequences that remain poorly understood. We investigated how distributional and abundance changes of copepods, the dominant group of zooplankton, have affected biogenic carbon cycling. We used trait-based, mechanistic models to estimate the magnitude of carbon transported downward through sinking faecal pellets, daily vertical migration and seasonal hibernation at depth. From such estimates for over 200,000 community observations in the northern North Atlantic we found carbon flux increased along the northwestern boundary of the study area and decreased in the open northern North Atlantic during the past 55 years. These changes in export were primarily associated with changes in copepod biomass, driven by shifting distributions of abundant, large-bodied species. Our findings highlight how recent climate change has affected downward carbon transport by altering copepod community structure and demonstrate how carbon fluxes through plankton communities can be mechanistically implemented in next-generation biogeochemical models with size-structured representations of zooplankton communities.


Asunto(s)
Ciclo del Carbono , Cambio Climático , Copépodos/metabolismo , Zooplancton/metabolismo , Animales , Océano Atlántico , Biomasa , Modelos Biológicos
10.
Sci Adv ; 4(7): eaar4349, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30050985

RESUMEN

In seasonal environments, timing is everything: Ecosystem dynamics are controlled by how well predators can match their prey in space and time. This match of predator and prey is thought to be particularly critical for the vulnerable larval life stages of many fish, where limited parental investment means that population survival can depend on how well larvae match the timing of their food. We develop and apply novel metrics of thermal time to estimate the timing of unobserved stages of fish larvae and their prey across the north Atlantic. The result shows that previously identified life-history strategies are adaptive in that they allow parents to "predict" a beneficial environment for their offspring and meet larval fish food timing that varies by 99 days across a species' range.


Asunto(s)
Adaptación Fisiológica , Conducta Alimentaria/psicología , Peces/fisiología , Animales , Océano Atlántico , Ecosistema , Peces/crecimiento & desarrollo , Larva/fisiología , Conducta Predatoria , Temperatura
11.
PLoS One ; 13(1): e0189956, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29351280

RESUMEN

The increased availability of high-resolution ocean data globally has enabled more detailed analyses of physical-biological interactions and their consequences to the ecosystem. We present IBMlib, which is a versatile, portable and computationally effective framework for conducting Lagrangian simulations in the marine environment. The purpose of the framework is to handle complex individual-level biological models of organisms, combined with realistic 3D oceanographic model of physics and biogeochemistry describing the environment of the organisms without assumptions about spatial or temporal scales. The open-source framework features a minimal robust interface to facilitate the coupling between individual-level biological models and oceanographic models, and we provide application examples including forward/backward simulations, habitat connectivity calculations, assessing ocean conditions, comparison of physical circulation models, model ensemble runs and recently posterior Eulerian simulations using the IBMlib framework. We present the code design ideas behind the longevity of the code, our implementation experiences, as well as code performance benchmarking. The framework may contribute substantially to progresses in representing, understanding, predicting and eventually managing marine ecosystems.


Asunto(s)
Modelos Teóricos , Oceanografía , Computadores , Ecosistema , Biología Marina , Programas Informáticos , Interfaz Usuario-Computador
12.
PLoS One ; 12(12): e0189731, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29253876

RESUMEN

Biodiversity is a multifaceted concept, yet most biodiversity studies have taken a taxonomic approach, implying that all species are equally important. However, species do not contribute equally to ecosystem processes and differ markedly in their responses to changing environments. This recognition has led to the exploration of other components of biodiversity, notably the diversity of ecologically important traits. Recent studies taking into account both taxonomic and trait diversity have revealed that the two biodiversity components may exhibit pronounced temporal and spatial differences. These apparent incongruences indicate that the two components may respond differently to environmental drivers and that changes in one component might not affect the other. Such incongruences may provide insight into the structuring of communities through community assembly processes, and the resilience of ecosystems to change. Here we examine temporal and spatial patterns and drivers of multiple marine biodiversity indicators using the North Sea fish community as a case study. Based on long-term spatially resolved survey data on fish species occurrences and biomasses from 1983 to 2014 and an extensive trait dataset we: (i) investigate temporal and spatial incongruences between taxonomy and trait-based indicators of both richness and evenness; (ii) examine the underlying environmental drivers and, (iii) interpret the results in the context of assembly rules acting on community composition. Our study shows that taxonomy and trait-based biodiversity indicators differ in time and space and that these differences are correlated to natural and anthropogenic drivers, notably temperature, depth and substrate richness. Our findings show that trait-based biodiversity indicators add information regarding community composition and ecosystem structure compared to and in conjunction with taxonomy-based indicators. These results emphasize the importance of examining and monitoring multiple indicators of biodiversity in ecological studies as well as for conservation and ecosystem-based management purposes.


Asunto(s)
Biodiversidad , Ecosistema , Peces/fisiología , Animales , Conservación de los Recursos Naturales , Geografía , Mar del Norte , Fenotipo , Dinámica Poblacional , Análisis Espacio-Temporal , Temperatura
13.
Ecol Lett ; 19(12): 1403-1413, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27726281

RESUMEN

Functional traits, rather than taxonomic identity, determine the fitness of individuals in their environment: traits of marine organisms are therefore expected to vary across the global ocean as a function of the environment. Here, we quantify such spatial and seasonal variations based on extensive empirical data and present the first global biogeography of key traits (body size, feeding mode, relative offspring size and myelination) for pelagic copepods, the major group of marine zooplankton. We identify strong patterns with latitude, season and between ocean basins that are partially (c. 50%) explained by key environmental drivers. Body size, for example decreases with temperature, confirming the temperature-size rule, but surprisingly also with productivity, possibly driven by food-chain length and size-selective predation. Patterns unrelated to environmental predictors may originate from phylogenetic clustering. Our maps can be used as a test-bed for trait-based mechanistic models and to inspire next-generation biogeochemical models.


Asunto(s)
Distribución Animal/fisiología , Copépodos/genética , Copépodos/fisiología , Ecosistema , Filogeografía , Animales , Tamaño Corporal , Bases de Datos Factuales , Océanos y Mares , Estaciones del Año , Temperatura
14.
Glob Chang Biol ; 22(9): 3170-81, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27040720

RESUMEN

Statistical species distribution models (SDMs) are increasingly used to project spatial relocations of marine taxa under future climate change scenarios. However, tests of their predictive skill in the real-world are rare. Here, we use data from the Continuous Plankton Recorder program, one of the longest running and most extensive marine biological monitoring programs, to investigate the reliability of predicted plankton distributions. We apply three commonly used SDMs to 20 representative plankton species, including copepods, diatoms, and dinoflagellates, all found in the North Atlantic and adjacent seas. We fit the models to decadal subsets of the full (1958-2012) dataset, and then use them to predict both forward and backward in time, comparing the model predictions against the corresponding observations. The probability of correctly predicting presence was low, peaking at 0.5 for copepods, and model skill typically did not outperform a null model assuming distributions to be constant in time. The predicted prevalence increasingly differed from the observed prevalence for predictions with more distance in time from their training dataset. More detailed investigations based on four focal species revealed that strong spatial variations in skill exist, with the least skill at the edges of the distributions, where prevalence is lowest. Furthermore, the scores of traditional single-value model performance metrics were contrasting and some implied overoptimistic conclusions about model skill. Plankton may be particularly challenging to model, due to its short life span and the dispersive effects of constant water movements on all spatial scales, however there are few other studies against which to compare these results. We conclude that rigorous model validation, including comparison against null models, is essential to assess the robustness of projections of marine planktonic species under climate change.


Asunto(s)
Cambio Climático , Plancton , Clima , Océanos y Mares , Reproducibilidad de los Resultados
16.
Cardiol Young ; 25 Suppl 2: 8-30, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26377707

RESUMEN

In the United States alone, ∼14,000 children are hospitalised annually with acute heart failure. The science and art of caring for these patients continues to evolve. The International Pediatric Heart Failure Summit of Johns Hopkins All Children's Heart Institute was held on February 4 and 5, 2015. The 2015 International Pediatric Heart Failure Summit of Johns Hopkins All Children's Heart Institute was funded through the Andrews/Daicoff Cardiovascular Program Endowment, a philanthropic collaboration between All Children's Hospital and the Morsani College of Medicine at the University of South Florida (USF). Sponsored by All Children's Hospital Andrews/Daicoff Cardiovascular Program, the International Pediatric Heart Failure Summit assembled leaders in clinical and scientific disciplines related to paediatric heart failure and created a multi-disciplinary "think-tank". The purpose of this manuscript is to summarise the lessons from the 2015 International Pediatric Heart Failure Summit of Johns Hopkins All Children's Heart Institute, to describe the "state of the art" of the treatment of paediatric cardiac failure, and to discuss future directions for research in the domain of paediatric cardiac failure.


Asunto(s)
Cardiopatías Congénitas/diagnóstico , Cardiopatías Congénitas/terapia , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/terapia , Pediatría/tendencias , Congresos como Asunto , Cardiopatías Congénitas/epidemiología , Insuficiencia Cardíaca/epidemiología , Hospitales Pediátricos , Humanos , Estados Unidos
17.
PLoS One ; 9(9): e106237, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25184302

RESUMEN

We provide the strongest evidence to date supporting the existence of two independent blue whiting (Micromesistius poutassou (Risso, 1827)) populations in the North Atlantic. In spite of extensive data collected in conjunction with the fishery, the population structure of blue whiting is poorly understood. On one hand, genetic, morphometric, otolith and drift modelling studies point towards the existence of two populations, but, on the other hand, observations of adult distributions point towards a single population. A paradox therefore arises in attempting to reconcile these two sets of information. Here we analyse 1100 observations of blue whiting larvae from the Continuous Plankton Recorder (CPR) from 1948-2005 using modern statistical techniques. We show a clear spatial separation between a northern spawning area, in the Rockall Trough, and a southern one, off the Porcupine Seabight. We further show a difference in the timing of spawning between these sites of at least a month, and meaningful differences in interannual variability. The results therefore support the two-population hypothesis. Furthermore, we resolve the paradox by showing that the acoustic observations cited in support of the single-population model are not capable of resolving both populations, as they occur too late in the year and do not extend sufficiently far south to cover the southern population: the confusion is the result of a simple observational artefact. We conclude that blue whiting in the North Atlantic comprises two populations.


Asunto(s)
Distribución Animal/fisiología , Gadiformes/fisiología , Modelos Estadísticos , Animales , Océano Atlántico , Europa (Continente) , Gadiformes/clasificación , Larva/fisiología , Dinámica Poblacional
18.
Glob Chang Biol ; 20(8): 2484-91, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24824677

RESUMEN

Rising ocean temperatures are causing marine fish species to shift spatial distributions and ranges, and are altering predator-prey dynamics in food webs. Most documented cases of species shifts so far involve relatively small species at lower trophic levels, and consider individual species in ecological isolation from others. Here, we show that a large highly migratory top predator fish species has entered a high latitude subpolar area beyond its usual range. Bluefin tuna, Thunnus thynnus Linnaeus 1758, were captured in waters east of Greenland (65°N) in August 2012 during exploratory fishing for Atlantic mackerel, Scomber scombrus Linnaeus 1758. The bluefin tuna were captured in a single net-haul in 9-11 °C water together with 6 tonnes of mackerel, which is a preferred prey species and itself a new immigrant to the area. Regional temperatures in August 2012 were historically high and contributed to a warming trend since 1985, when temperatures began to rise. The presence of bluefin tuna in this region is likely due to a combination of warm temperatures that are physiologically more tolerable and immigration of an important prey species to the region. We conclude that a cascade of climate change impacts is restructuring the food web in east Greenland waters.


Asunto(s)
Cambio Climático , Cadena Alimentaria , Atún , Animales , Ecosistema , Groenlandia , Agua de Mar , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...