Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
1.
PLoS One ; 19(5): e0302584, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38709757

RESUMEN

The North African catfish (Clarias gariepinus) is a significant species in aquaculture, which is crucial for ensuring food and nutrition security. Their high adaptability to diverse environments has led to an increase in the number of farms that are available for their production. However, long-term closed breeding adversely affects their reproductive performance, leading to a decrease in production efficiency. This is possibly caused by inbreeding depression. To investigate the root cause of this issue, the genetic diversity of captive North African catfish populations was assessed in this study. Microsatellite genotyping and mitochondrial DNA D-loop sequencing were applied to 136 catfish specimens, collected from three populations captured for breeding in Thailand. Interestingly, extremely low inbreeding coefficients were obtained within each population, and distinct genetic diversity was observed among the three populations, indicating that their genetic origins are markedly different. This suggests that outbreeding depression by genetic admixture among currently captured populations of different origins may account for the low productivity of the North African catfish in Thailand. Genetic improvement of the North African catfish populations is required by introducing new populations whose origins are clearly known. This strategy should be systematically integrated into breeding programs to establish an ideal founder stock for selective breeding.


Asunto(s)
Bagres , ADN Mitocondrial , Variación Genética , Endogamia , Repeticiones de Microsatélite , Animales , Bagres/genética , Tailandia , Repeticiones de Microsatélite/genética , ADN Mitocondrial/genética , Genotipo , Acuicultura , Pueblo Norteafricano
2.
Viruses ; 16(4)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38675971

RESUMEN

The majority of cases of undifferentiated acute febrile illness (AFI) in the tropics have an undefined etiology. In Thailand, AFI accounts for two-thirds of illnesses reported to the Ministry of Public Health. To characterize the bacterial and viral causes of these AFIs, we conducted molecular pathogen screening and serological analyses in patients who sought treatment in Chum Phae Hospital, Khon Kaen province, during the period from 2015 to 2016. Through integrated approaches, we successfully identified the etiology in 25.5% of cases, with dengue virus infection being the most common cause, noted in 17% of the study population, followed by scrub typhus in 3.8% and rickettsioses in 6.8%. Further investigations targeting viruses in patients revealed the presence of Guadeloupe mosquito virus (GMV) in four patients without other pathogen co-infections. The characterization of four complete genome sequences of GMV amplified from AFI patients showed a 93-97% nucleotide sequence identity with GMV previously reported in mosquitoes. Nucleotide substitutions resulted in amino acid differences between GMV amplified from AFI patients and mosquitoes, observed in 37 positions. However, these changes had undergone purifying selection pressure and potentially had a minimal impact on protein function. Our study suggests that the GMV strains identified in the AFI patients are relatively similar to those previously reported in mosquitoes, highlighting their potential role associated with febrile illness.


Asunto(s)
Dengue , Fiebre , Humanos , Tailandia/epidemiología , Femenino , Masculino , Persona de Mediana Edad , Adulto , Dengue/virología , Dengue/epidemiología , Fiebre/virología , Adulto Joven , Adolescente , Filogenia , Anciano , Niño , Tifus por Ácaros/microbiología , Tifus por Ácaros/epidemiología , Tifus por Ácaros/virología , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/clasificación , Preescolar , Coinfección/virología , Coinfección/microbiología , Coinfección/epidemiología , Virus/genética , Virus/clasificación , Virus/aislamiento & purificación , Culicidae/virología , Culicidae/microbiología , Animales , Virus del Dengue/genética , Virus del Dengue/clasificación , Virus del Dengue/aislamiento & purificación , Infecciones por Rickettsia/epidemiología , Infecciones por Rickettsia/microbiología , Infecciones por Rickettsia/virología
3.
BMC Complement Med Ther ; 24(1): 130, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38521934

RESUMEN

BACKGROUND: In a pilot study using both cannabidiol (CBD) and tetrahydrocannabinol (THC) as single agents in advanced cancer patients undergoing palliative care in Thailand, the doses were generally well tolerated, and the outcome measure of total symptom distress scores showed overall symptom benefit. The current study aims to determine the intensity of the symptoms experienced by breast cancer patients, to explore the microbiome profile, cytokines, and bacterial metabolites before and after the treatment with cannabis oil or no cannabis oil, and to study the pharmacokinetics parameters and pharmacogenetics profile of the doses. METHODS: A randomized, double-blinded, placebo-controlled trial will be conducted on the breast cancer cases who were diagnosed with breast cancer and currently receiving chemotherapy at King Chulalongkorn Memorial Hospital (KCMH), Bangkok, Thailand. Block randomization will be used to allocate the patients into three groups: Ganja Oil (THC 2 mg/ml; THC 0.08 mg/drop, and CBD 0.02 mg/drop), Metta Osot (THC 81 mg/ml; THC 3 mg/drop), and placebo oil. The Edmonton Symptom Assessment System (ESAS), Food Frequency Questionnaires (FFQ), microbiome profile, cytokines, and bacterial metabolites will be assessed before and after the interventions, along with pharmacokinetic and pharmacogenetic profile of the treatment during the intervention. TRIAL REGISTRATION: TCTR20220809001.


Asunto(s)
Neoplasias de la Mama , Cannabidiol , Cannabis , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Proyectos Piloto , Tailandia , Cannabidiol/efectos adversos , Citocinas , Ensayos Clínicos Controlados Aleatorios como Asunto
4.
Food Funct ; 15(7): 3640-3652, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38482709

RESUMEN

This study aimed to investigate the effects of gac fruit juice and its probiotic fermentation (FGJ) utilizing Lactobacillus paracasei on the modulation of the gut microbiota and the production of short-chain fatty acids (SCFAs). We conducted a comparison between FGJ, non-fermented gac juice (GJ), and control samples through in vitro digestion and colonic fermentation using the human gut microbiota derived from fecal inoculum. Our findings revealed that both GJ and FGJ led to an increase in the viability of Lactobacilli, with FGJ exhibiting even higher levels compared to the control. The results from the 16S rDNA amplicon sequencing technique showed that both GJ and FGJ exerted positive impact on the gut microbiota by promoting beneficial bacteria, notably Lactobacillus mucosae and Bacteroides vulgatus. Additionally, both GJ and FGJ significantly elevated the levels of SCFAs, particularly acetic, propionic, and n-butyric acids, as well as lactic acid, in comparison to the control. Notably, FGJ exhibited a more pronounced effect on the gut microbiota compared to GJ. This was evident in its ability to enhance species richness, reduce the Firmicutes to Bacteroidetes (F/B) ratio, promote Akkermansia, and inhibit pathogenic Escherichia coli. Moreover, FGJ displayed enhanced production of SCFAs, especially acetic and lactic acids, in contrast to GJ. Our findings suggest that the probiotic fermentation of gac fruit enhances its functional attributes in promoting a balanced gut microbiota. This beverage demonstrates potential as a functional food with potential advantages for sustaining intestinal health.


Asunto(s)
Microbioma Gastrointestinal , Humanos , Jugos de Frutas y Vegetales , Fermentación , Ácidos Grasos Volátiles/farmacología , Frutas
5.
Microbiol Spectr ; 12(3): e0358923, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38319115

RESUMEN

Whole-genome sequence analysis of six Enterobacter hormaechei and two Serratia nevei strains, using a hybrid assembly of Illumina and Oxford Nanopore Technologies sequencing, revealed the presence of the epidemic blaOXA-181-carrying IncX3 plasmids co-harboring qnrS1 and ∆ere(A) genes, as well as multiple multidrug resistance (MDR) plasmids disseminating in all strains, originated from dogs and cats in Thailand. The subspecies and sequence types (ST) of the E. hormaechei strains recovered from canine and feline opportunistic infections included E. hormaechei subsp. xiangfangensis ST171 (n = 3), ST121 (n = 1), and ST182 (n = 1), as well as E. hormaechei subsp. steigerwaltii ST65 (n = 1). Five of the six E. hormaechei strains harbored an identical 51,479-bp blaOXA-181-carrying IncX3 plasmid. However, the blaOXA-181 plasmid (pCUVET22-969.1) of the E. hormaechei strain CUVET22-969 presented a variation due to the insertion of ISKpn74 and ISSbo1 into the virB region. Additionally, the blaOXA-181 plasmids of S. nevei strains were nearly identical to the others at the nucleotide level, with ISEcl1 inserted upstream of the qnrS1 gene. The E. hormaechei and S. nevei lineages from canine and feline origins might acquire the epidemic blaOXA-181-carrying IncX3 and MDR plasmids, which are shared among Enterobacterales, contributing to the development of resistance. These findings suggest the spillover of significant OXA-181-encoding plasmids to these bacteria, causing severe opportunistic infections in dogs and cats in Thailand. Surveillance and effective hygienic practice, especially in hospitalized animals and veterinary hospitals, should be urgently implemented to prevent the spread of these plasmids in healthcare settings and communities. IMPORTANCE: blaOXA-181 is a significant carbapenemase-encoding gene, usually associated with an epidemic IncX3 plasmid found in Enterobacterales worldwide. In this article, we revealed six carbapenemase-producing (CP) Enterobacter hormaechei and two CP Serratia nevei strains harboring blaOXA-181-carrying IncX3 and multidrug resistance plasmids recovered from dogs and cats in Thailand. The carriage of these plasmids can promote extensively drug-resistant properties, limiting antimicrobial treatment options in veterinary medicine. Since E. hormaechei and S. nevei harboring blaOXA-181-carrying IncX3 plasmids have not been previously reported in dogs and cats, our findings provide the first evidence of dissemination of the epidemic plasmids in these bacterial species isolated from animal origins. Pets in communities can serve as reservoirs of significant antimicrobial resistance determinants. This situation places a burden on antimicrobial treatment in small animal practice and poses a public health threat.


Asunto(s)
Enterobacteriaceae Resistentes a los Carbapenémicos , Enfermedades de los Gatos , Enfermedades de los Perros , Enterobacter , Gatos , Animales , Perros , Serratia/genética , Antibacterianos , Enfermedades de los Perros/microbiología , Plásmidos/genética , beta-Lactamasas/genética , Enterobacteriaceae Resistentes a los Carbapenémicos/genética , Pruebas de Sensibilidad Microbiana
6.
Microbiol Spectr ; 12(3): e0346223, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38323824

RESUMEN

Isoniazid-resistant tuberculosis (Hr-TB) is an important drug-resistant tuberculosis (TB). In addition to rifampicin, resistance to other medications for Hr-TB can impact the course of treatment; however, there are currently limited data in the literature. In this study, the drug susceptibility profiles of Hr-TB treatment and resistance-conferring mutations were investigated for Hr-TB clinical isolates from Thailand. Phenotypic drug susceptibility testing (pDST) and genotypic drug susceptibility testing (gDST) were retrospectively and prospectively investigated using the Mycobacterium Growth Indicator Tube (MGIT), the broth microdilution (BMD) method, and whole-genome sequencing (WGS)-based gDST. The prevalence of Hr-TB cases was 11.2% among patients with TB. Most Hr-TB cases (89.5%) were newly diagnosed patients with TB. In the pDST analysis, approximately 55.6% (60/108) of the tested Hr-TB clinical isolates exhibited high-level isoniazid resistance. In addition, the Hr-TB clinical isolates presented co-resistance to ethambutol (3/161, 1.9%), levofloxacin (2/96, 2.1%), and pyrazinamide (24/118, 20.3%). In 56 Hr-TB clinical isolates, WGS-based gDST predicted resistance to isoniazid [katG S315T (48.2%) and fabG1 c-15t (26.8%)], rifampicin [rpoB L430P and rpoB L452P (5.4%)], and fluoroquinolones [gyrA D94G (1.8%)], but no mutation for ethambutol was detected. The categorical agreement for the detection of resistance to isoniazid, rifampicin, ethambutol, and levofloxacin between WGS-based gDST and the MGIT or the BMD method ranged from 80.4% to 98.2% or 82.1% to 100%, respectively. pDST and gDST demonstrated a low co-resistance rate between isoniazid and second-line TB drugs in Hr-TB clinical isolates. IMPORTANCE: The prevalence of isoniazid-resistant tuberculosis (Hr-TB) is the highest among other types of drug-resistant tuberculosis. Currently, the World Health Organization (WHO) guidelines recommend the treatment of Hr-TB with rifampicin, ethambutol, pyrazinamide, and levofloxacin for 6 months. The susceptibility profiles of Hr-TB clinical isolates, especially when they are co-resistant to second-line drugs, are critical in the selection of the appropriate treatment regimen to prevent treatment failure. This study highlights the susceptibility profiles of the WHO-recommended treatment regimen in Hr-TB clinical isolates from a tertiary care hospital in Thailand and the concordance and importance of using the phenotypic drug susceptibility testing or genotypic drug susceptibility testing for accurate and comprehensive interpretation of results.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Humanos , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Isoniazida/farmacología , Pirazinamida/uso terapéutico , Etambutol , Rifampin/farmacología , Rifampin/uso terapéutico , Levofloxacino/uso terapéutico , Tailandia/epidemiología , Pruebas de Sensibilidad Microbiana , Estudios Retrospectivos , Centros de Atención Terciaria , Mycobacterium tuberculosis/genética , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/epidemiología , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Mutación
7.
Sci Rep ; 14(1): 3404, 2024 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-38337025

RESUMEN

Tuberculosis (TB) is an infectious disease caused by the Mycobacterium tuberculosis complex (Mtbc), which develops from asymptomatic latent TB to active stages. The microbiome was purposed as a potential factor affecting TB pathogenesis, but the study was limited. The present study explored the association between gut-pharyngeal microbiome and TB stages in cynomolgus macaques using the full-length 16S rDNA amplicon sequencing based on Oxford Nanopore Technologies. The total of 71 macaques was divided into TB (-) control, TB (+) latent and TB (+) active groups. The differential abundance analysis showed that Haemophilus hemolyticus was decreased, while Prevotella species were increased in the pharyngeal microbiome of TB (+) macaques. In addition, Eubacterium coprostanoligenes in the gut was enriched in TB (+) macaques. Alteration of these bacteria might affect immune regulation and TB severity, but details of mechanisms should be further explored and validated. In summary, microbiota may be associated with host immune regulation and affect TB progression. The findings suggested the potential mechanisms of host-microbes interaction, which may improve the understanding of the role of microbiota and help develop therapeutics for TB in the future.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Nanoporos , Tuberculosis , Animales , Tuberculosis/microbiología , Microbioma Gastrointestinal/genética , Microbiota/genética , Macaca fascicularis/genética , ARN Ribosómico 16S/genética
8.
Sci Rep ; 14(1): 2347, 2024 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-38281987

RESUMEN

Schistosoma mekongi, a significant schistosome parasite, has various life stages, including egg, cercaria, female, and male, that play crucial roles in the complex life cycle. This study aimed to explore the microRNA (miRNA) profiles across these developmental stages to understand their potential functions and evolutionary significance, which have not been studied. Pre-processed sequencing reads of small RNA (sRNA) were obtained, and annotations were performed against the S. japonicum reference miRNA database. Results indicated marked variations in miRNA profiles across different life stages, with notable similarities observed between female and male S. mekongi. Principal Coordinate Analysis (PCoA) and unsupervised clustering revealed distinct miRNA signatures for each stage. Gene ontology (GO) analysis unveiled the potential roles of these miRNAs in various biological processes. The differential expression of specific miRNAs was prominent across stages, suggesting their involvement in crucial developmental processes. Furthermore, orthologous miRNA analysis against various worm species revealed distinct presence-absence patterns, providing insights into the evolutionary relationships of these miRNAs. In conclusion, this comprehensive investigation into the miRNA profiles of S. mekongi offers valuable insights into the functional and evolutionary aspects of miRNAs in schistosome biology.


Asunto(s)
MicroARNs , Schistosoma japonicum , Animales , Masculino , Femenino , Schistosoma japonicum/genética , MicroARNs/genética , Estadios del Ciclo de Vida/genética , ARN de Helminto/genética
9.
Am J Primatol ; 86(2): e23580, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38012960

RESUMEN

Stone tool use is a rare behavior across nonhuman primates. Here we report the first population of common long-tailed macaques (Macaca fascicularis fascicularis) who customarily used stone tools to open rock oysters (Saccostrea forskali) on a small island along the Thai Gulf in Koh Ped (KPE), eastern Thailand. We observed this population several times during the past 10 years, but no stone-tool use behavior was observed until our survey during the coronavirus disease 2019 (COVID-19) pandemic in July 2022. KPE is located in Pattaya City, a hotspot for tourism in Thailand. Tourists in this area frequently provided large amounts of food for the monkeys on KPE. During the COVID-19 curfew, however, tourists were not allowed to access the island, and monkeys began to face food scarcity. During this time, we observed stone-tool use behavior for the first time on KPE. Based on our observations, the first tool manipulation was similar to stone throwing (a known precursor of stone tool use). From our observations in March 2023, we found 17 subadult/adult animals performing the behavior, 15 of 17 were males and mostly solitary while performing the behavior. The M. f. fascicularis subspecies was confirmed by distribution, morphological characteristics, and mtDNA and SRY gene sequences. Taken together, we proposed that the stone tool use behavior in the KPE common long-tailed macaques emerged due to the COVID-19 food scarcity. Since traveling is no longer restricted many tourists have started coming back to the island, and there is a high risk for this stone tool-use behavior to disappear within this population of long-tailed macaques.


Asunto(s)
COVID-19 , Comportamiento del Uso de la Herramienta , Masculino , Animales , Femenino , Macaca fascicularis , Tailandia/epidemiología , COVID-19/epidemiología , Alimentos
10.
Cancer Res Treat ; 56(2): 455-463, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37986562

RESUMEN

PURPOSE: The epidermal growth factor receptor (EGFR) mutation is a widely prevalent oncogene driver in non-small cell lung cancer (NSCLC) in East Asia. The detection of EGFR mutations is a standard biomarker test performed routinely in patients with NSCLC for the selection of targeted therapy. Here, our objective was to develop a portable new technique for detecting EGFR (19Del, T790M, and L858R) mutations based on Nanopore sequencing. MATERIALS AND METHODS: The assay employed a blocker displacement amplification (BDA)-based polymerase chain reaction (PCR) technique combined with Nanopore sequencing to detect EGFR mutations. Mutant and wild-type EGFR clones were generated from DNA from H1650 (19Del heterozygous) and H1975 (T790M and L858R heterozygous) lung cancer cell lines. Then, they were mixed to assess the performance of this technique for detecting low variant allele frequencies (VAFs). Subsequently, formalin-fixed, paraffin-embedded (FFPE) tissue and cell-free DNA (cfDNA) from patients with NSCLC were used for clinical validation. RESULTS: The assay can detect low VAF at 0.5% mutant mixed in wild-type EGFR. Using FFPE DNA, the concordance rates of EGFR 19Del, T790M, and L858R mutations between our method and Cobas real-time PCR were 98.46%, 100%, and 100%, respectively. For cfDNA, the concordance rates of EGFR 19Del, T790M, and L858R mutations between our method and droplet digital PCR were 94.74%, 100%, and 100%, respectively. CONCLUSION: The BDA amplicon Nanopore sequencing is a highly accurate and sensitive method for the detection of EGFR mutations in clinical specimens.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Ácidos Nucleicos Libres de Células , Neoplasias Pulmonares , Secuenciación de Nanoporos , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/diagnóstico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Receptores ErbB/genética , Inhibidores de Proteínas Quinasas/uso terapéutico , Mutación , ADN de Neoplasias , Ácidos Nucleicos Libres de Células/uso terapéutico , Reacción en Cadena en Tiempo Real de la Polimerasa
11.
ACS Omega ; 8(47): 44733-44744, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38046356

RESUMEN

Glucose 6-phosphate dehydrogenase (G6PD) deficiency is the most common inherited enzymopathy. Identification of the G6PD deficiency through screening is crucial to preventing adverse effects associated with hemolytic anemia following antimalarial drug exposure. Therefore, a rapid and precise field-based G6PD deficiency diagnosis is required, particularly in rural regions where malaria is prevalent. The phenotypic diagnosis of the G6PD intermediate has also been a challenging issue due to the overlapping of G6PD activity levels between deficient and normal individuals, leading to a misinterpretation. The availability of an accurate point-of-care testing (POCT) for G6PD genotype diagnosis will therefore increase the opportunity for screening heterozygous cases in a low-resource setting. In this study, an allele-specific recombinase polymerase amplification (AS RPA) with clustered regularly interspaced short palindromic repeats-Cas12a (CRISPR-Cas12a) was developed as a POCT for accurate diagnosis of common G6PD mutations in Thailand. The AS primers for the wild type and mutant alleles of G6PD MahidolG487A and G6PD ViangchanG871A were designed and used in RPA reactions. Following application of CRISPR-Cas12a systems containing specific protospacer adjacent motif, the targeted RPA amplicons were visualized with the naked eye. Results demonstrated that the G6PD MahidolG487A and G6PD ViangchanG871A assays reached 93.62 and 98.15% sensitivity, respectively. The specificity was 88.71% in MahidolG487A and 99.02% in G6PD ViangchanG871A. The diagnosis accuracy of the G6PD MahidolG487A and G6PD ViangchanG871A assays was 91.67 and 98.72%, respectively. From DNA extraction to detection, the assay required approximately 52 min. In conclusion, this study demonstrated the high performance of an AS RPA with the CRISPR-Cas12a platform for G6PD MahidolG487A and G6PD ViangchanG871A detection assays and the potential use of G6PD genotyping as POCT.

12.
Braz J Microbiol ; 54(4): 3283-3290, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37889464

RESUMEN

Bacteria are regarded as predisposing and perpetuating factors causing otitis externa (OE), whereas auricular anatomy is a predisposing factor. This study aims to investigate bacterial populations in the external auditory canals of healthy dogs and dogs with OE. Four categories of ear swabs included healthy erect-ear dogs, erect-ear dogs with OE, healthy pendulous-ear dogs and pendulous-ear dogs with OE. After bacterial DNA extraction, 16S rDNAs were amplified using specific primers within a V3/V4 region. Following DNA library construction, high-throughput sequencing was performed on MiSeq (Illumina). CLC Microbial Genomics Module was used to determine the rarefaction curve, bacterial classification, relative abundance, richness and diversity index. The results demonstrated that healthy dogs had higher bacterial richness and diversity than the dogs with OE. Comparable with culture-dependent methods described previously, this study revealed predominant Corynebacterium spp., Pseudomonas spp., Staphylococcus spp., and Proteus spp. in OE cases. Furthermore, high-throughput sequencing might disclose some potential emerging pathogens including Tissierella spp., Acinetobacter spp., and Achromobacter spp., which have not been reported in previous canine OE cases. Nevertheless, larger sample sizes are further required for an extensive evidence-based investigation.


Asunto(s)
Enfermedades de los Perros , Otitis Externa , Perros , Animales , Otitis Externa/veterinaria , Otitis Externa/microbiología , ADN Ribosómico/genética , Bacterias/genética , Staphylococcus , Pseudomonas/genética , Enfermedades de los Perros/microbiología
13.
Genomics Inform ; 21(3): e39, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37813635

RESUMEN

DNA barcoding without assessing reliability and validity causes taxonomic errors of species identification, which is responsible for disruptions of their conservation and aquaculture industry. Although DNA barcoding facilitates molecular identification and phylogenetic analysis of species, its availability in clariid catfish lineage remains uncertain. In this study, DNA barcoding was developed and validated for clariid catfish. 2,970 barcode sequences from mitochondrial cytochrome c oxidase I (COI) and cytochrome b (Cytb) genes and D-loop sequences were analyzed for 37 clariid catfish species. The highest intraspecific nearest neighbor distances were 85.47%, 98.03%, and 89.10% for COI, Cytb, and D-loop sequences, respectively. This suggests that the Cytb gene is the most appropriate for identifying clariid catfish and can serve as a standard region for DNA barcoding. A positive barcoding gap between interspecific and intraspecific sequence divergence was observed in the Cytb dataset but not in the COI and D-loop datasets. Intraspecific variation was typically less than 4.4%, whereas interspecific variation was generally more than 66.9%. However, a species complex was detected in walking catfish and significant intraspecific sequence divergence was observed in North African catfish. These findings suggest the need to focus on developing a DNA barcoding system for classifying clariid catfish properly and to validate its efficacy for a wider range of clariid catfish. With an enriched database of multiple sequences from a target species and its genus, species identification can be more accurate and biodiversity assessment of the species can be facilitated.

14.
Biomed Rep ; 19(4): 70, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37719681

RESUMEN

Breast cancer is a leading cause of cancer-related deaths worldwide. Moreover, standard treatments are limited, so new alternative treatments are required. Thai traditional formulary medicine (TTFM) utilizes certain herbs to treat different diseases due to their dominant properties including anti-fungal, anti-bacterial, antigenotoxic, anti-inflammatory and anti-cancer actions. However, very little is known about the anti-cancer properties of TTFM against breast cancer cells and the underlying molecular mechanism has not been elucidated. Therefore, the present study, evaluated the metabolite profiles of TTFM extracts, the anti-cancer activities of TTFM extracts, their effects on the apoptosis pathway and associated gene expression profiles. Liquid chromatography with tandem mass spectroscopy analysis identified a total of 226 compounds within the TTFM extracts. Several of these compounds have been previously shown to have an anti-cancer effect in certain cancer types. The MTT results demonstrated that the TTFM extracts significantly reduced the cell viability of the breast cancer 4T1 and MDA-MB-231 cell lines. Moreover, an apoptosis assay, demonstrated that the TTFM extracts significantly increased the proportion of apoptotic cells. Furthermore, the RNA-sequencing results demonstrated that 25 known genes were affected by TTFM treatment in 4T1 cells. TTFM treatment significantly up-regulated Slc5a8 and Arhgap9 expression compared with untreated cells. Moreover, Cybb, and Bach2os were significantly downregulated after TTFM treatment compared with untreated cells. Reverse transcription-quantitative PCR demonstrated that TTFM extract treatment significantly increased Slc5a8 and Arhgap9 mRNA expression levels and significantly decreased Cybb mRNA expression levels. Moreover, the mRNA expression levels of Bax and Casp9 were significantly increased after TTFM treatment in 4T1 cells compared with EpH4-Ev cells. These findings indicated anti-breast cancer activity via induction of the apoptotic process. However, further experiments are required to elucidate how TTFM specifically regulates genes and proteins. This study supports the potential usage of TTFM extracts for the development of anti-cancer drugs.

15.
Exp Biol Med (Maywood) ; 248(20): 1841-1849, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37702217

RESUMEN

Coronavirus disease 2019 (COVID-19) is a worldwide pandemic infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). World Health Organization (WHO) has defined the viral variants of concern (VOC) which cause more severe disease, higher transmissibility, and reduced vaccine efficacy. In this study, the "Nano COVID-19" workflow based on Oxford nanopore sequencing of the full-length spike gene combined with flexible data analysis options was developed to identify SARS-CoV-2 VOCs. The primers were designed to cover the full-length spike gene and can amplify all VOC strains. The results of VOC identification based on phylogenetic analysis of the full-length spike gene were comparable to the whole genome sequencing (WGS). Compared to the standard VOC identification pipeline, the fast analysis based on Read Assignment, Mapping, and Phylogenetic Analysis in Real Time (RAMPART) and the user-friendly method based on EPI2ME yielded 89.3% and 97.3% accuracy, respectively. The EPI2ME pipeline is recommended for researchers without bioinformatic skills, whereas RAMPART is more suitable for bioinformaticians. This workflow provides a cost-effective, simplified pipeline with a rapid turnaround time. Furthermore, it is portable to point-of-care SARS-CoV-2 VOC identification and compatible with large-scale analysis. Therefore, "Nano COVID-19" is an alternative viral epidemic screening and transmission tracking workflow.


Asunto(s)
COVID-19 , Secuenciación de Nanoporos , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Filogenia , Mutación
16.
Sci Rep ; 13(1): 14950, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37696929

RESUMEN

The environment has an important effect on the gut microbiota-an essential part of the host's health-and is strongly influenced by the dietary pattern of the host as these together shape the composition and functionality of the gut microbiota in humans and other animals. This study compared the gut microbiota of Macaca fascicularis fascicularis and M. f. aurea in mangrove and island populations using 16S rRNA gene sequencing on a nanopore platform to investigate the effect of the environment and/or diet. The results revealed that the M. f. fascicularis populations that received anthropogenic food exhibited a higher richness and evenness of gut microbiota than the M. f. aurea populations in different habitats. Firmicutes and Bacteroidetes were the two most abundant bacterial phyla in the gut microbiota of both these subspecies; however, the relative abundance of these phyla was significantly higher in M. f. aurea than in M. f. fascicularis. This variation in the gut microbiota between the two subspecies in different habitats mostly resulted from the differences in their diets. Moreover, the specific adaptation of M. f. aurea to different environments with a different food availability had a significant effect on their microbial composition.


Asunto(s)
Dieta , Ecosistema , Microbioma Gastrointestinal , Macaca fascicularis , Animales , Microbioma Gastrointestinal/genética , Macaca fascicularis/genética , Macaca fascicularis/microbiología , ARN Ribosómico 16S/genética , Especificidad de la Especie
17.
Ann Clin Microbiol Antimicrob ; 22(1): 87, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37735687

RESUMEN

OBJECTIVES: This study investigated the differences in epidemiological and clinical data, and antimicrobial susceptibilities among different subspecies of Mycobacterium abscessus complex (MABSC) clinical isolates at a medical school in Thailand. METHODS: A total of 143 MABSC clinical isolates recovered from 74 patients were genotypically analyzed for erm(41), rrl, and rrs mutations, and antimicrobial susceptibilities were determined using a broth microdilution method. Patient characteristics and clinical outcomes were reviewed from the medical records. RESULTS: Seventy-four patients were infected with 28/74 (37.8%) M. abscessus subspecies abscessus (MAB), 43/74 (58.1%) M. abscessus subsp. massiliense (MMA), and 3/74 (4.1%) M. abscessus subsp. bolletii (MBO). The clinical findings and outcomes were generally indistinguishable between the three subspecies. All three subspecies of MABSC clinical isolates exhibited high resistance rates to ciprofloxacin, doxycycline, moxifloxacin, TMP/SMX, and tobramycin. MAB had the highest resistance rates to clarithromycin (27.8%, 20/72) and amikacin (6.9%, 5/72) compared to MBO and MMA, with p < 0.001 and p = 0.004, respectively. In addition, the rough morphotype was significantly associated with resistance to amikacin (8.9%, 5/56), clarithromycin (26.8%, 15/56), and imipenem (76.8%, 43/56) (p < 0.001), whereas the smooth morphotype was resistant to linezolid (57.1%, 48/84) (p = 0.002). In addition, T28 of erm(41), rrl (A2058C/G and A2059C/G), and rrs (A1408G) mutations were detected in 87.4% (125/143), 16.1% (23/143), and 9.1% (13/143) of MABSC isolates, respectively. CONCLUSIONS: Three MABSC subspecies caused a variety of infections in patients with different underlying comorbidities. The drug susceptibility patterns of the recent circulating MABSC strains in Thailand were different among the three MABSC subspecies and two morphotypes.


Asunto(s)
Antiinfecciosos , Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Humanos , Claritromicina , Facultades de Medicina , Tailandia/epidemiología , Mycobacterium abscessus/genética , Amicacina/farmacología , Infecciones por Mycobacterium no Tuberculosas/epidemiología
18.
Viruses ; 15(6)2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37376693

RESUMEN

Coronavirus disease 2019 (COVID-19) is an infectious condition caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which surfaced in Thailand in early 2020. The current study investigated the SARS-CoV-2 lineages circulating in Thailand and their evolutionary history. Complete genome sequencing of 210 SARS-CoV-2 samples collected from collaborating hospitals and the Institute of Urban Disease Control and Prevention over two years, from December 2020 to July 2022, was performed using next-generation sequencing technology. Multiple lineage introductions were observed before the emergence of the B.1.1.529 omicron variant, including B.1.36.16, B.1.351, B.1.1, B.1.1.7, B.1.524, AY.30, and B.1.617.2. The B.1.1.529 omicron variant was subsequently detected between January 2022 and June 2022. The evolutionary rate for the spike gene of SARS-CoV-2 was estimated to be between 0.87 and 1.71 × 10-3 substitutions per site per year. There was a substantial prevalence of the predominant mutations C25672T (L94F), C25961T (T190I), and G26167T (V259L) in the ORF3a gene during the Thailand outbreaks. Complete genome sequencing can enhance the prediction of future variant changes in viral genomes, which is crucial to ensuring that vaccine strains are protective against worldwide outbreaks.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Epidemiología Molecular , COVID-19/epidemiología , Tailandia/epidemiología , Secuenciación de Nucleótidos de Alto Rendimiento
19.
Arch Virol ; 168(7): 185, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37340138

RESUMEN

High-risk human papillomavirus (HPV) infection is the most common cause of cervical cancer, but low-risk HPV strains can sometimes also be involved. Although HPV genotyping techniques used in clinical diagnosis cannot detect low-risk HPV, next-generation sequencing (NGS) can detect both types. However, DNA library preparation is complicated and expensive. The aim of this study was to develop a simplified, cost-effective sample preparation procedure for HPV genotyping based on next-generation sequencing (NGS). After DNA extraction, a first round of PCR was performed using modified MY09/11 primers specific for the L1 region of the HPV genome, followed by a second round of PCR to add the indexes and adaptors. Then, the DNA libraries were purified and quantified, and high-throughput sequencing was performed using an Illumina MiSeq platform. The sequencing reads were compared with reference sequences for HPV genotyping. The limit of detection for HPV amplification was 100 copies/µl. Analysis of the correlation of pathological cytology with the HPV genotype in individual clinical samples showed that HPV66 was the most common genotype found in the normal stage, whereas HPV16 was the main genotype found in low-grade squamous intraepithelial lesions, high-grade squamous intraepithelial lesions, and cervical cancer. This NGS method can detect and identify several HPV genotypes with 92% accuracy and 100% reproducibility, and it shows potential as a simplified and cost-effective technique for large-scale HPV genotyping in clinical samples.


Asunto(s)
Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Femenino , Humanos , Genotipo , Virus del Papiloma Humano , Infecciones por Papillomavirus/diagnóstico , Reproducibilidad de los Resultados , Análisis Costo-Beneficio , Papillomaviridae/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ADN Viral/genética , ADN Viral/análisis
20.
Cells ; 12(9)2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37174640

RESUMEN

Maes et al. (2008) published the first paper demonstrating that major depressive disorder (MDD) is accompanied by abnormalities in the microbiota-gut-brain axis, as evidenced by elevated serum IgM/IgA to lipopolysaccharides (LPS) of Gram-negative bacteria, such as Morganella morganii and Klebsiella Pneumoniae. The latter aberrations, which point to increased gut permeability (leaky gut), are linked to activated neuro-immune and oxidative pathways in MDD. To delineate the profile and composition of the gut microbiome in Thai patients with MDD, we examined fecal samples of 32 MDD patients and 37 controls using 16S rDNA sequencing, analyzed α- (Chao1 and Shannon indices) and ß-diversity (Bray-Curtis dissimilarity), and conducted linear discriminant analysis (LDA) effect size (LEfSe) analysis. Neither α- nor ß-diversity differed significantly between MDD and controls. Rhodospirillaceae, Hungatella, Clostridium bolteae, Hungatella hathewayi, and Clostridium propionicum were significantly enriched in MDD, while Gracillibacteraceae family, Lutispora, and Ruminococcus genus, Ruminococcus callidus, Desulfovibrio piger, Coprococcus comes, and Gemmiger were enriched in controls. Contradictory results have been reported for all these taxa, with the exception of Ruminococcus, which is depleted in six different MDD studies (one study showed increased abundance), many medical disorders that show comorbidities with MDD, and animal MDD models. Our results may suggest a specific profile of compositional gut dysbiosis in Thai MDD patients, with increases in some pathobionts and depletion of some beneficial microbiota. The results suggest that depletion of Ruminococcus may be a more universal biomarker of MDD that may contribute to increased enteral LPS load, LPS translocation, and gut-brain axis abnormalities.


Asunto(s)
Trastorno Depresivo Mayor , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , Ruminococcus , Lipopolisacáridos/metabolismo , Pueblos del Sudeste Asiático , Biomarcadores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...