Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros











Intervalo de año de publicación
1.
Animals (Basel) ; 14(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39272275

RESUMEN

ß-lactam antibiotics are a key element in the treatment of bacterial infections. However, the excessive use of these antibiotics has contributed to the emergence of ß-lactam-resistant enterobacteria, including Escherichia coli. One of the main challenges facing the public health sector is antibacterial resistance (ABR), mainly due to limited options in its pharmacological treatment. Currently, extended-spectrum ß-lactamases (ESBLs) present an alarming situation, as there is an increase in morbidity and mortality rates, prolonged hospital stays, and increased costs for sanitary supplies, which involve not only humans but also the environment and animals, especially animals destined for food production. This review presents an analysis of the prevalence of ESBL-producing E. coli and its distribution in different animal sources throughout the world, providing an understanding of the association with resistance and virulence genes, as well as perceiving the population structure of E. coli.

2.
RSC Med Chem ; 15(8): 2785-2791, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39149106

RESUMEN

Tuberculosis is a worldwide health problem that warrants attention given that the current treatment options require a long-term chemotherapeutic period and have reported the development of Mycobacterium tuberculosis (M. tuberculosis) multidrug resistant strains. In this study, n-butyl and isobutyl quinoxaline-7-carboxylate 1,4-di-N-oxide were evaluated against replicating and non-replicating H37Rv M. tuberculosis strains. The results showed that seventeen of the twenty-eight derivatives have minimum inhibitory concentration (MIC) values lower than isoniazid (2.92 µM). The most active antimycobacterial agents were T-148, T-149, T-163, and T-164, which have the lowest MIC values (0.53, 0.57, 0.53, and 0.55 µM respectively). These results confirm the potential of quinoxaline-1,4-di-N-oxide against M. tuberculosis to develop and obtain new and more safety antituberculosis drugs.

3.
Molecules ; 29(16)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39203022

RESUMEN

Currently, antimicrobial resistance (AMR) is a serious health problem in the world, mainly because of the rapid spread of multidrug-resistant (MDR) bacteria. These include bacteria that produce ß-lactamases, which confer resistance to ß-lactams, the antibiotics with the most prescriptions in the world. Carbapenems are particularly noteworthy because they are considered the ultimate therapeutic option for MDR bacteria. However, this group of antibiotics can also be hydrolyzed by ß-lactamases, including metallo-ß-lactamases (MBLs), which have one or two zinc ions (Zn2+) on the active site and are resistant to common inhibitors of serine ß-lactamases, such as clavulanic acid, sulbactam, tazobactam, and avibactam. Therefore, the design of inhibitors against MBLs has been directed toward various compounds, with groups such as nitrogen, thiols, and metal-binding carboxylates, or compounds such as bicyclic boronates that mimic hydrolysis intermediates. Other compounds, such as dipicolinic acid and aspergillomarasmin A, have also been shown to inhibit MBLs by chelating Zn2+. In fact, recent inhibitors are based on Zn2+ chelation, which is an important factor in the mechanism of action of most MBL inhibitors. Therefore, in this review, we analyzed the current strategies for the design and mechanism of action of metal-ion-binding inhibitors that combat MDR bacteria.


Asunto(s)
Zinc , Inhibidores de beta-Lactamasas , beta-Lactamasas , Inhibidores de beta-Lactamasas/química , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas/metabolismo , beta-Lactamasas/química , Zinc/química , Antibacterianos/farmacología , Antibacterianos/química , Humanos , Metales/química , Bacterias/efectos de los fármacos , Bacterias/enzimología
4.
Med Chem ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39082172

RESUMEN

BACKGROUND: Chagas disease has an ineffective drug treatment despite efforts made over the last four decades. The carbonic anhydrase of Trypanosoma cruzi (α-TcCA) has emerged as an interesting target for the design of new antiparasitic compounds due to its crucial role in parasite processes. OBJECTIVE: The aim of this study was to identify potential α-TcCA inhibitors with trypanocide activity. METHOD: A maximum common substructure (MCS) and molecular docking were used to carry out a ligand- and structure-based virtual screening of ZINC20 and MolPort databases. The compounds selected were evaluated in an in vitro model against the NINOA strain of Trypanosoma cruzi, and cytotoxicity was determined in a murine model of macrophage cells J774.2. RESULTS: Five sulfonamide derivatives (C7, C9, C14, C19, and C21) had the highest docking scores (-6.94 to -8.31 kcal/mol). They showed key residue interactions on the active site of the α-TcCA and good biopharmaceutical and pharmacokinetic properties. C7, C9, and C21 had half-maximal inhibitory concentration (IC50) values of 26, 61.6, and 49 µM, respectively, against NINOA strain epimastigotes of Trypanosoma cruzi. CONCLUSION: Compounds C7, C9, and C21 showed trypanocide activity; therefore, these results encourage the development of new trypanocidal agents based on their scaffold.

5.
ACS Omega ; 9(5): 5429-5439, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38343925

RESUMEN

Iostephane heterophylla is a traditional Mexican medicinal plant and is an important source of secondary metabolites with antimicrobial and cytotoxic activity. The aim of this work was to conduct a comparative analysis of secondary metabolites of different roots and leaf extracts of I. heterophylla from two zones in Mexico using ultraperformance liquid chromatography (UPLC) and gas chromatography (GC) coupled with mass spectrometry (MS). Twelve secondary metabolites from roots were identified in the leaves. Five new molecular weight secondary metabolites not previously reported were found. Six bioactive metabolites were quantified (quercetin ≤0.151 mg/mL in root and ≤0.041 mg/mL in leaf; hesperidin ≤0.66 mg/mL in root and ≤0.173 mg/mL in leaf; epicatechin ≤0. 163 mg/mL in root and ≤0.664 mg/mL in leaf; caffeic acid ≤0.372 mg/mL in root and ≤0.393 mg/mL in leaf; chlorogenic acid ≤0.234 mg/mL in root and ≤0.328 mg/mL in leaf; and xanthorrhizol ≤0.667 mg/mL in root), and a selective extraction method was established: quercetin in root and leaf by reflux; hesperidin in leaf by Soxhlet and in leaf by reflux; chlorogenic acid in root by Soxhlet and in leaf by reflux; chlorogenic acid ≤0.234 mg/mL in root and ≤0.328 mg/mL in leaf by ultrasound-assisted extraction; epicatechin in root by ultrasound-assisted extraction; caffeic acid in root by reflux and in leaf by Soxhlet. The most efficient solvent was methanol. This study provides a new secondary metabolite profile found in the leaves of I. heterophylla, highlighting it is an essential source of three bioactive compounds: epicatechin, hesperidin, and quercetin.

6.
Curr Med Chem ; 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37909441

RESUMEN

BACKGROUND: Parasitic diseases are a public health problem despite the existence of drugs for their treatment. These treatments have variable efficacy and, in some cases, serious adverse effects. There has been interest in the enzyme carbonic anhydrase (CA) in the last two decades since it is essential in the life cycle of various parasites due to its important participation in processes such as pyrimidine synthesis, HCO3- transport across cell membranes, and the maintenance of intracellular pH and ion transport (Na+, K+, and H+), among others. OBJECTIVE: In this review, CA was analyzed as a pharmacological target in etiological agents of malaria, American trypanosomiasis, leishmaniasis, amoebiasis, and trichomoniasis. The CA inhibitors´ design, binding mode, and structure-activity relationship are also discussed. CONCLUSION: According to this review, advances in discovering compounds with potent inhibitory activity suggest that CA is a candidate for developing new antiprotozoal agents.

7.
Pharmaceutics ; 15(8)2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37631260

RESUMEN

Cutaneous leishmaniasis (CL) is a public health problem affecting more than 98 countries worldwide. No vaccine is available to prevent the disease, and available medical treatments cause serious side effects. Additionally, treatment failure and parasite resistance have made the development of new drugs against CL necessary. In this work, a virtual screening of natural products from the BIOFACQUIM and Selleckchem databases was performed using the method of molecular docking at the triosephosphate isomerase (TIM) enzyme interface of Leishmania mexicana (L. mexicana). Finally, the in vitro leishmanicidal activity of selected compounds against two strains of L. mexicana, their cytotoxicity, and selectivity index were determined. The top ten compounds were obtained based on the docking results. Four were selected for further in silico analysis. The ADME-Tox analysis of the selected compounds predicted favorable physicochemical and toxicological properties. Among these four compounds, S-8 (IC50 = 55 µM) demonstrated a two-fold higher activity against the promastigote of both L. mexicana strains than the reference drug glucantime (IC50 = 133 µM). This finding encourages the screening of natural products as new anti-leishmania agents.

8.
J Mol Model ; 29(6): 180, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37195391

RESUMEN

CONTEXT: Quinoxaline 1,4-di-N-oxide is a scaffold with a wide array of biological activities, particularly its use to develop new antiparasitic agents. Recently, these compounds have been described as trypanothione reductase (TR), triosephosphate isomerase (TIM), and cathepsin-L (CatL) inhibitors from Trypanosoma cruzi, Trichomonas vaginalis, and Fasciola hepatica, respectively. METHODS: Therefore, the main objective of this work was to analyze quinoxaline 1,4-di-N-oxide derivatives of two databases (ZINC15 and PubChem) and literature by molecular docking, dynamic simulation and complemented by MMPBSA, and contact analysis of molecular dynamics' trajectory on the active site of the enzymes to know their potential effect inhibitory. Interestingly, compounds Lit_C777 and Zn_C38 show preference as potential TcTR inhibitors over HsGR, with favorable energy contributions from residues including Pro398 and Leu399 from Z-site, Glu467 from γ-Glu site, and His461, part of the catalytic triad. Compound Lit_C208 shows potential selective inhibition against TvTIM over HsTIM, with favorable energy contributions toward TvTIM catalytic dyad, but away from HsTIM catalytic dyad. Compound Lit_C388 was most stable in FhCatL with a higher calculated binding energy by MMPBSA analysis than HsCatL, though not interacting with catalytic dyad, holding favorable energy contribution from residues oriented at FhCatL catalytic dyad. Therefore, these kinds of compounds are good candidates to continue researching and confirming their activity through in vitro studies as new selective antiparasitic agents.


Asunto(s)
Fasciola hepatica , Trichomonas vaginalis , Trypanosoma cruzi , Animales , Simulación del Acoplamiento Molecular , Antiparasitarios
9.
Bol. latinoam. Caribe plantas med. aromát ; 22(1): 19-36, ene. 2023. tab
Artículo en Inglés | LILACS | ID: biblio-1555028

RESUMEN

Currently, in developing countries, parasitic and bacterial diseases as amebiasis, giardiasis, trichonomiasis, leishmaniasis, trypanosomiasis, tuberculosis, and nocardiasis are a public health problem. The pharmacological treatment for these diseases is not completely effective and causes several side effects in patients. Therefore, the search for new compounds with biological activity is very important to develop new drugs safely and more efficiently. In this study, different organic extracts obtained from thirty-seven species of the Salvadoran flora were evaluated in several in vitro models to determine their potential activity against five protozoa (Entamoeba histolytica, Giardia lamblia, Trichomonas vaginalis, Leishmania mexicana, and Trypanosoma cruzi) and three bacteria (Acinetobacter baumanni, Mycobacterium tuberculosis, and Nocardia brasiliensis). The results showed the activity of eight extracts with IC50values of less than 100 µg/mL against L. mexicanaand five extracts with MICs values less than <50 µg/mL against M. tuberculosis. Besides, seven plant species showed MICs ≤3.125 µg/mL against N. brasiliensis. Additionally, secondary metabolites (flavonoids and monoterpene oxygenate) previously reported as active were fingerprint by UPLC-MS to establish a potential correlation with the biological activity showed.


Actualmente, en los países en vías de desarrollo, enfermedades parasitarias y bacterianas como la amebiasis, giardiasis, trichonomiasis, leishmaniasis, tripanosomiasis, tuberculosis y nocardiasis son un problema de salud pública. El tratamiento farmacológico de estas enfermedades no es del todo eficaz y provoca varios efectos secundarios en los pacientes. Por lo tanto, la búsqueda de nuevos compuestos con actividad biológica es muy importante para desarrollar nuevos fármacos, seguros y eficaces. En este estudio se evaluaron diferentes extractos orgánicos obtenidos de treinta y siete especies de la flora salvadoreña en varios modelos in vitro para determinar su actividad potencial contra cinco parásitos (Entamoeba histolytica, Giardia lamblia, Trichomonas vaginalis, Leishmania mexicana y Trypanosoma cruzi) y tres bacterias (Acinetobacter baumanni, Mycobacterium tuberculosis y Nocardia brasiliensis). Los resultados mostraron la actividad de ocho extractos con valores de CI50 menores a 100 µg/mL contra L. mexicana y cinco extractos con valores de CIMs <50 µg/mL contra M. tuberculosis. Además, siete especies de plantas presentaron CIM ≤3,125 µg/mL frente a N. brasilienses. Finalmente, los metabolitos secundarios (flavonoides y monoterpenos oxigenados) previamente reportados como activos fueron determinados por UPLC-MS para establecer una posible correlación con la actividad biológica mostrada.


Asunto(s)
Extractos Vegetales/farmacología , Flora , Antibacterianos/uso terapéutico , Antiparasitarios/uso terapéutico , Plantas Medicinales , Enfermedades Transmisibles/tratamiento farmacológico , El Salvador
10.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36362102

RESUMEN

American trypanosomiasis is a worldwide health problem that requires attention due to ineffective treatment options. We evaluated n-butyl and isobutyl quinoxaline-7-carboxylate 1,4-di-N-oxide derivatives against trypomastigotes of the Trypanosoma cruzi strains NINOA and INC-5. An in silico analysis of the interactions of 1,4-di-N-oxide on the active site of trypanothione reductase (TR) and an enzyme inhibition study was carried out. The n-butyl series compound identified as T-150 had the best trypanocidal activity against T. cruzi trypomastigotes, with a 13% TR inhibition at 44 µM. The derivative T-147 behaved as a mixed inhibitor with Ki and Ki' inhibition constants of 11.4 and 60.8 µM, respectively. This finding is comparable to the TR inhibitor mepacrine (Ki = 19 µM).


Asunto(s)
Enfermedad de Chagas , Tripanocidas , Trypanosoma cruzi , Humanos , Tripanocidas/farmacología , Tripanocidas/química , Quinoxalinas/química , Óxidos/farmacología , NADH NADPH Oxidorreductasas , Enfermedad de Chagas/tratamiento farmacológico , Inhibidores Enzimáticos/química
11.
Med Chem ; 19(1): 91-98, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35975866

RESUMEN

BACKGROUND: Currently, protozoan infectious diseases affect billions of people every year. Their pharmacological treatments offer few alternatives and are restrictive due to undesirable side effects and parasite drug resistance. OBJECTIVE: In this work, three ontology-based approaches were used to identify shared potential drug targets in five species of protozoa. METHODS: In this study, proteomes of five species of protozoa: Entamoeba histolytica (E. histolytica), Giardia lamblia (G. lamblia), Trichomonas vaginalis (T. vaginalis), Trypanosoma cruzi (T. cruzi), and Leishmania mexicana (L. mexicana), were compared through orthology inference using three different tools to identify potential drug targets. RESULTS: Comparing the proteomes of E. histolytica, G. lamblia, T. vaginalis, T. cruzi, and L. mexicana, twelve targets for developing new drugs with antiprotozoal activity were identified. CONCLUSION: New drug targets were identified by orthology-based analysis; therefore, they could be considered for the development of new broad-spectrum antiprotozoal drugs. Particularly, triosephosphate isomerase emerges as a common target in trypanosomatids and amitochondriate parasites.


Asunto(s)
Antiprotozoarios , Giardia lamblia , Leishmania mexicana , Infecciones por Protozoos , Trichomonas vaginalis , Humanos , Proteoma/farmacología , Infecciones por Protozoos/tratamiento farmacológico , Antiprotozoarios/farmacología , Antiprotozoarios/uso terapéutico
12.
Molecules ; 27(10)2022 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-35630802

RESUMEN

Spodoptera frugiperda (S. frugiperda) remains a global primary pest of maize. Therefore, new options to combat this pest are necessary. In this study, the insecticidal activity of three crude foliar extracts (ethanol, dichloromethane, and hexane) and their main secondary metabolites (quercetin and chlorogenic acid) of the species Solidago graminifolia (S. graminifolia) by ingestion bioassays against S. frugiperda larvae was analyzed. Additionally, the extracts were phytochemically elucidated by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) analysis. Finally, an in silico study of the potential interaction of quercetin on S. frugiperda acetylcholinesterase was performed. Organic extracts were obtained in the range from 5 to 33%. The ethanolic extract caused higher mortality (81%) with a half-maximal lethal concentration (LC50) of 0.496 mg/mL. Flavonoid secondary metabolites such as hyperoside, quercetin, isoquercetin, kaempferol, and avicularin and some phenolic acids such as chlorogenic acid, solidagoic acid, gallic acid, hexoside, and rosmarinic acid were identified. In particular, quercetin had an LC50 of 0.157 mg/mL, and chlorogenic acid did not have insecticidal activity but showed an antagonistic effect on quercetin. The molecular docking analysis of quercetin on the active site of S. frugiperda acetylcholinesterase showed a -5.4 kcal/mol binding energy value, lower than acetylcholine and chlorpyrifos (-4.45 and -4.46 kcal/mol, respectively). Additionally, the interactions profile showed that quercetin had π-π interactions with amino acids W198, Y235, and H553 on the active site.


Asunto(s)
Asteraceae , Insecticidas , Solidago , Acetilcolinesterasa , Animales , Ácido Clorogénico/farmacología , Cromatografía Liquida , Insecticidas/farmacología , Simulación del Acoplamiento Molecular , Quercetina/farmacología , Spodoptera , Espectrometría de Masas en Tándem
13.
Curr Med Chem ; 29(14): 2504-2529, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34517794

RESUMEN

BACKGROUND: Parasitic diseases caused by protozoa, such as Chagas disease, leishmaniasis, malaria, African trypanosomiasis, amoebiasis, trichomoniasis, and giardiasis, are considered serious public health problems in developing countries. Drug resistance among parasites justifies the search for new therapeutic drugs, and the identification of new targets becomes a valuable approach. In this scenario, the glycolysis pathway, which converts glucose into pyruvate, plays an important role in the protozoa energy supply, and it is therefore considered a promising target. In this pathway, triose phosphate isomerase (TIM) plays an essential role in efficient energy production. Furthermore, protozoa TIM shows structural differences with human enzyme counterparts, suggesting the possibility of obtaining selective inhibitors. Therefore, TIM is considered a valid approach to develop new antiprotozoal agents, inhibiting the glycolysis in the parasite. OBJECTIVE: In this review, we discuss the drug design strategies, structure-activity relationship, and binding modes of outstanding TIM inhibitors against Trypanosoma cruzi, Trypanosoma brucei, Plasmodium falciparum, Giardia lamblia, Leishmania mexicana, Trichomonas vaginalis, and Entamoeba histolytica. RESULTS: TIM inhibitors have mainly shown aromatic systems and symmetrical structure, where the size and type of heteroatom are important for enzyme inhibition. This inhibition is mainly based on the interaction with i) the interfacial region of TIM inducing changes on the quaternary and tertiary structure or ii) with the TIM catalytic region, the main pathways that disable the catalytic activity of the enzyme. CONCLUSION: Benzothiazole, benzoxazole, benzimidazole, and sulfhydryl derivatives stand out as TIM inhibitors. In silico and in vitro studies have demonstrated that the inhibitors bind mainly at the TIM dimer interface. In this review, the development of new TIM inhibitors as antiprotozoal drugs is demonstrated as an important pharmaceutical strategy that may lead to new therapies for these ancient parasitic diseases.


Asunto(s)
Antiprotozoarios , Enfermedad de Chagas , Trypanosoma brucei brucei , Trypanosoma cruzi , Antiprotozoarios/química , Antiprotozoarios/farmacología , Antiprotozoarios/uso terapéutico , Enfermedad de Chagas/tratamiento farmacológico , Humanos , Triosa-Fosfato Isomerasa/química , Triosa-Fosfato Isomerasa/metabolismo
14.
Mol Divers ; 26(1): 39-50, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33216257

RESUMEN

An N-acylhydrazone scaffold has been used to develop new drugs with diverse biological activities, including trypanocidal activity against different strains of Trypanosoma cruzi. However, their mechanism of action is not clear, although in T. cruzi it has been suggested that the enzyme cruzain is involved. The aim in this work was to obtain new N-propionyl-N'-benzeneacylhydrazone derivatives as potential anti-T. cruzi agents and elucidate their potential mechanism of action by a molecular docking analysis and effects on the expression of the cruzain gene. Compounds 9 and 12 were the most active agents against epimastigotes and compound 5 showed better activity than benznidazole in T. cruzi blood trypomastigotes. Additionally, compounds 9 and 12 significantly increase the expression of the cruzain gene. In summary, the in silico and in vitro data presented herein suggest that compound 9 is a cruzain inhibitor.


Asunto(s)
Tripanocidas , Trypanosoma cruzi , Cisteína Endopeptidasas , Simulación del Acoplamiento Molecular , Proteínas Protozoarias , Relación Estructura-Actividad , Tripanocidas/farmacología
15.
Mini Rev Med Chem ; 22(4): 586-599, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34353256

RESUMEN

BACKGROUND: Type 2 diabetes mellitus (T2DM) is one of the most serious and prevalent diseases worldwide. In the last decade, type 2 sodium-glucose cotransporter inhibitors (iSGLT2) were approved as alternative drugs for the pharmacological treatment of T2DM. The anti-hyperglycemic mechanism of action of these drugs involves glycosuria. In addition, SGLT2 inhibitors cause beneficial effects such as weight loss, a decrease in blood pressure, and others. OBJECTIVE: This review aimed to describe the origin of SGLT2 inhibitors and analyze their recent development in preclinical and clinical trials. RESULTS: In 2013, the FDA approved SGLT2 inhibitors as a new alternative for the treatment of T2DM. These drugs have shown good tolerance with few adverse effects in clinical trials. Additionally, new potential anti-T2DM agents based on iSGLT2 (O-, C-, and N-glucosides) have exhibited a favorable profile in preclinical evaluations, making them candidates for advanced clinical trials. CONCLUSION: The clinical results of SGLT2 inhibitors show the importance of this drug class as new anti-T2DM agents with a potential dual effect. Additionally, the preclinical results of SGLT2 inhibitors favor the design and development of more selective new agents. However, several adverse effects could be a potential risk for patients.


Asunto(s)
Diabetes Mellitus Tipo 2 , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Compuestos de Bencidrilo/farmacología , Canagliflozina/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Glucosa , Humanos , Hipoglucemiantes/efectos adversos , Sodio/uso terapéutico , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico
16.
Mol Divers ; 26(4): 2025-2037, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34529209

RESUMEN

The development of new, more selective, environmental-friendly insecticide alternatives is in high demand for the control of Spodoptera frugiperda (S. frugiperda). The major objective of this work was to search for new potential S. frugiperda acetylcholinesterase (AChE) inhibitors. A ligand-based virtual screening was initially carried out considering six scaffolds derived from eugenol and the ZINC15, PubChem, and MolPort databases. Subsequently, molecular docking analysis of the selected compounds on the active site and a second region (determined by blind molecular docking) of the AChE of S. frugiperda was performed. Molecular dynamics and Molecular Mechanics Poisson-Boltzmann Surface Area analyses were also applied to improve the docking results. Finally, three new eugenol analogs were evaluated in vitro against S. frugiperda larvae. The virtual screening identified 1609 compounds from the chemical libraries. Control compounds were selected from the interaction fingerprint by molecular docking. Only three new eugenol analogs (1, 3, and 4) were stable at 50 ns by molecular dynamics. Compounds 1 and 4 had the best biological activity by diet (LC50 = 0.042 mg/mL) and by topical route (LC50 = 0.027 mg/mL), respectively. At least three new eugenol derivatives possessed good-to-excellent insecticidal activity against S. frugiperda.


Asunto(s)
Inhibidores de la Colinesterasa , Insecticidas , Acetilcolinesterasa/metabolismo , Animales , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Eugenol/farmacología , Insecticidas/farmacología , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Spodoptera
17.
Braz J Microbiol ; 52(4): 1755-1767, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34494227

RESUMEN

Stenotrophomonas' metabolic versatility plays important roles in the remediation of contaminated environment and plant growth promotion. We investigated two Stenotrophomonas strains isolated from textile polluted sewage for their ability to decolorize and degrade azo dyes. Two Stenotrophomonas strains (TepeL and TepeS) were isolated from textile effluents (Tepetitla, Mexico) using the selective agar Stenotrophomonas vancomycin, imipenem, amphotericin B agar (SVIA). Isolates' identity was determined by the sequencing of their partial 16S rRNA fragments. Their abilities to decolorize dyes were tested in a Luria broth supplemented with varying concentrations (50 mg/L-1 g/L) of textile dyes (acidic red, methyl orange, reactive green, acidic yellow, and reactive black). Fourier-transform infrared (FTIR) spectroscopy and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) metabolite analyses were used to determine the effect of the isolates' growth on the dyes (acidic red, methyl orange). We also identified the enzymes that may be involved in the degradation process. Phylogenetic analysis based on the 16S rDNA sequences showed that the isolates belong to the genus Stenotrophomonas. Stenotrophomonas sp. TepeL and TepeS respectively decolorize all the azo dyes at the tested concentration except at 1 g/L and degraded the azo dyes. The degradation resulted in the formation of N, N-dimethyl p-phenylenediamine, and sodium 4-amino-1-naphthalenesulfonate from methyl orange and acid red. TepeL and TepeS rapidly decolorized and degraded the azo dyes tested. This result showed that the two isolates have a good potential for the decontamination of textile effluents.


Asunto(s)
Compuestos Azo , Biodegradación Ambiental , Stenotrophomonas , Textiles , Agar , Compuestos Azo/metabolismo , Cromatografía Liquida , Colorantes/metabolismo , México , Filogenia , ARN Ribosómico 16S/genética , Stenotrophomonas/genética , Stenotrophomonas/metabolismo , Espectrometría de Masas en Tándem , Aguas Residuales/química , Aguas Residuales/microbiología
18.
Int J Mol Sci ; 22(11)2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34073021

RESUMEN

Infectious diseases caused by intestinal protozoan, such as Entamoeba histolytica (E. histolytica) and Giardia lamblia (G. lamblia) are a worldwide public health issue. They affect more than 70 million people every year. They colonize intestines causing primarily diarrhea; nevertheless, these infections can lead to more serious complications. The treatment of choice, metronidazole, is in doubt due to adverse effects and resistance. Therefore, there is a need for new compounds against these parasites. In this work, a structure-based virtual screening of FDA-approved drugs was performed to identify compounds with antiprotozoal activity. The glycolytic enzyme triosephosphate isomerase, present in both E. histolytica and G. lamblia, was used as the drug target. The compounds with the best average docking score on both structures were selected for the in vitro evaluation. Three compounds, chlorhexidine, tolcapone, and imatinib, were capable of inhibit growth on G. lamblia trophozoites (0.05-4.935 µg/mL), while folic acid showed activity against E. histolytica (0.186 µg/mL) and G. lamblia (5.342 µg/mL).


Asunto(s)
Clorhexidina/farmacología , Entamoeba histolytica/efectos de los fármacos , Giardia lamblia/efectos de los fármacos , Mesilato de Imatinib/farmacología , Tolcapona , Antiprotozoarios/farmacología , Reposicionamiento de Medicamentos , Tolcapona/farmacología , Trofozoítos/efectos de los fármacos
19.
Curr Med Chem ; 28(38): 7910-7936, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33820509

RESUMEN

BACKGROUND: Molecules with a phenothiazine scaffold have been considered versatile organic structures with a wide variety of biological activities, such as antipsychotic, anticancer, antibacterial, antifungal, antiviral, anti-inflammatory, antimalarial, and trypanocidal, etc. It was first discovered in the 19th century as a histochemical dye, phenothiazine methylene blue. Since then, its derivatives have been studied, showing new activities; moreover, they have also been repurposed. OBJECTIVE: This review aims to describe the main synthetic routes of phenothiazines and, particularly, the anticancer and antiprotozoal activities reported during the second decade of the 2000s (2010 - 2020). RESULTS: Several studies on phenothiazines against cancer and protozoa have revealed that these compounds show IC50 values in the micromolar and near nanomolar range. The structural analyses have revealed that compounds bearing halogens or electron-withdrawing groups at 2-position have favorable anticancer activity. Phenothiazine dyes have shown a photosensitizing activity against trypanosomatids at a micromolar range. Tetra and pentacyclic azaphenothiazines are structures with a high broad-spectrum anticancer activity. CONCLUSION: The phenothiazine scaffold is favorable for developing anticancer agents, especially those bearing halogens and electron-withdrawing groups bound at 2-position with enhanced biological activities through a variety of aromatic, aliphatic and heterocyclic substituents in the thiazine nitrogen. Further studies are warranted along these investigation lines to attain more active anticancer and antiprotozoal compounds with minimal to negligible cytotoxicity.


Asunto(s)
Antineoplásicos , Antiprotozoarios , Antipsicóticos , Antineoplásicos/farmacología , Antiprotozoarios/farmacología , Antipsicóticos/farmacología , Química Farmacéutica , Humanos , Fenotiazinas/farmacología , Relación Estructura-Actividad
20.
Acta Pharm ; 71(3): 485-495, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36654088

RESUMEN

Trichomoniasis is a public health problem worldwide. Trichomoniasis treatment consists of the use of nitroimidazole derivatives; however, therapeutic ineffectiveness occurs in 5 to 20 % of the cases. Therefore, it is essential to propose new pharmacological agents against this disease. In this work, esters of quinoxaline-7-carboxylate-1,4-di-N-oxide (EQX-NO) were evaluated in in vitro assays as novel trichomonicidal agents. Additionally, an in vitro enzyme assay and molecular docking analysis against triosephosphate isomerase of Trichomonas vaginalis to confirm their mechanism of action were performed. Ethyl (compound 12) and n-propyl (compound 37) esters of quinoxaline-7-carboxy-late-1,4-di-N-oxide derivatives showed trichomonicidal activity comparable to nitazoxanide, whereas five methyl (compounds 5, 15, 19, 20 and 22), four isopropyl (compounds 28, 29, 30 and 34), three ethyl (compounds 4, 13 and 23) and one npropyl (compound 35) ester derivatives displayed activity comparable to albendazole. Compounds 6 and 20 decreased 100 % of the enzyme activity of recombinant protein triosephosphate isomerase.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA