Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Intervalo de año de publicación
1.
Biomed Pharmacother ; 168: 115814, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37918256

RESUMEN

Recently, our group identified serine-protease hepsin from primary tumor as a biomarker of metastasis and thrombosis in patients with localized colorectal cancer. We described hepsin promotes invasion and thrombin generation of colorectal cancer cells in vitro and in vivo and identified venetoclax as a hepsin inhibitor that suppresses these effects. Now, we aspire to identify additional hepsin inhibitors, aiming to broaden the therapeutic choices for targeted intervention in colorectal cancer. METHODS: We developed a virtual screening based on molecular docking between the hepsin active site and 2000 compounds from DrugBank. The most promising drug was validated in a hepsin activity assay. Subsequently, we measured the hepsin inhibitor effect on colorectal cancer cells with basal or overexpression of hepsin via wound-healing, gelatin matrix invasion, and plasma thrombin generation assays. Finally, a zebrafish model determined whether hepsin inhibition reduced the invasion of colorectal cancer cells overexpressing hepsin. RESULTS: Suramin was the most potent hepsin inhibitor (docking score: -11.9691 Kcal/mol), with an IC50 of 0.66 µM. In Caco-2 cells with basal or overexpression of hepsin, suramin decreased migration and significantly reduced invasion and thrombin generation. Suramin did not reduce the thrombotic phenotype in the hepsin-negative colorectal cancer cells HCT-116 and DLD-1. Finally, suramin significantly reduced the in vivo invasion of Caco-2 cells overexpressing hepsin. CONCLUSION: Suramin is a novel hepsin inhibitor that reduces its protumorigenic and prothrombotic effects in colorectal cancer cells. This suggests the possibility of repurposing suramin and its derivatives to augment the repertoire of molecular targeted therapies against colorectal cancer.


Asunto(s)
Neoplasias Colorrectales , Tripanosomiasis , Animales , Humanos , Suramina/farmacología , Suramina/uso terapéutico , Trombina , Células CACO-2 , Simulación del Acoplamiento Molecular , Pez Cebra , Fenotipo , Neoplasias Colorrectales/tratamiento farmacológico
2.
Front Mol Biosci ; 10: 1182925, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37275957

RESUMEN

Introduction: Hepsin is a type II transmembrane serine protease and its expression has been linked to greater tumorigenicity and worse prognosis in different tumors. Recently, our group demonstrated that high hepsin levels from primary tumor were associated with a higher risk of metastasis and thrombosis in localized colorectal cancer patients. This study aims to explore the molecular role of hepsin in colorectal cancer. Methods: Hepsin levels in plasma from resected and metastatic colorectal cancer patients were analyzed by ELISA. The effect of hepsin levels on cell migration, invasion, and proliferation, as well as on the activation of crucial cancer signaling pathways, was performed in vitro using colorectal cancer cells. A thrombin generation assay determined the procoagulant function of hepsin from these cells. A virtual screening of a database containing more than 2000 FDA-approved compounds was performed to screen hepsin inhibitors, and selected compounds were tested in vitro for their ability to suppress hepsin effects in colorectal cancer cells. Xenotransplantation assays were done in zebrafish larvae to study the impact of venetoclax on invasion promoted by hepsin. Results: Our results showed higher plasma hepsin levels in metastatic patients, among which, hepsin was higher in those suffering thrombosis. Hepsin overexpression increased colorectal cancer cell invasion, Erk1/2 and STAT3 phosphorylation, and thrombin generation in plasma. In addition, we identified venetoclax as a potent hepsin inhibitor that reduced the metastatic and prothrombotic phenotypes of hepsin-expressing colorectal cancer cells. Interestingly, pretreatment with Venetoclax of cells overexpressing hepsin reduced their invasiveness in vivo. Discussion: Our results demonstrate that hepsin overexpression correlates with a more aggressive and prothrombotic tumor phenotype. Likewise, they demonstrate the antitumor role of venetoclax as a hepsin inhibitor, laying the groundwork for molecular-targeted therapy for colorectal cancer.

3.
Antioxidants (Basel) ; 11(11)2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36421454

RESUMEN

Natural products bear a multivariate biochemical profile with antioxidant, anti-inflammatory, antibacterial, and antitumoral properties. Along with their natural sources, they have been widely used both as anti-aging and anti-melanogenic agents due to their effective contribution in the elimination of reactive oxygen species (ROS) caused by oxidative stress. Their anti-aging activity is mainly related to their capacity of inhibiting enzymes like Human Neutrophil Elastase (HNE), Hyaluronidase (Hyal) and Tyrosinase (Tyr). Herein, we accumulated literature information (covering the period 1965-2020) on the inhibitory activity of natural products and their natural sources towards these enzymes. To navigate this information, we developed a database and server termed ANTIAGE-DB that allows the prediction of the anti-aging potential of target compounds. The server operates in two axes. First a comparison of compounds by shape similarity can be performed against our curated database of natural products whose inhibitory potential has been established in the literature. In addition, inverse virtual screening can be performed for a chosen molecule against the three targeted enzymes. The server is open access, and a detailed report with the prediction results is emailed to the user. ANTIAGE-DB could enable researchers to explore the chemical space of natural based products, but is not limited to, as anti-aging compounds and can predict their anti-aging potential. ANTIAGE-DB is accessed online.

4.
Artículo en Inglés | MEDLINE | ID: mdl-35711865

RESUMEN

Infectious aortitis is an uncommon but life-threatening cause of aortitis. Given the lack of specific symptoms, establishing the diagnosis is often a challenge. When it is associated with an endovascular infection, such as infective endocarditis, blood cultures may be diagnostic although often limited by low positive predictive value. Imaging studies may reveal characteristic findings, with computerized tomography angiography being the most sensitive. Management includes prompt initiation of antimicrobial therapy followed by surgical intervention, keeping in mind that operative mortality is high due to weakened arterial wall integrity. Here we describe a 25-year-old woman without relevant medical history, who presented to the hospital with subacute onset of fever, back pain and malaise, and was found to have infectious aortitis secondary to Streptococcus pneumoniae endocarditis. Despite appropriate antimicrobial coverage and surgical repair attempts, she succumbed to aortic perforation after a complicated and prolonged hospitalization.

5.
Int J Mol Sci ; 22(9)2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33922356

RESUMEN

Artificial Intelligence is providing astonishing results, with medicine being one of its favourite playgrounds. Machine Learning and, in particular, Deep Neural Networks are behind this revolution. Among the most challenging targets of interest in medicine are cancer diagnosis and therapies but, to start this revolution, software tools need to be adapted to cover the new requirements. In this sense, learning tools are becoming a commodity but, to be able to assist doctors on a daily basis, it is essential to fully understand how models can be interpreted. In this survey, we analyse current machine learning models and other in-silico tools as applied to medicine-specifically, to cancer research-and we discuss their interpretability, performance and the input data they are fed with. Artificial neural networks (ANN), logistic regression (LR) and support vector machines (SVM) have been observed to be the preferred models. In addition, convolutional neural networks (CNNs), supported by the rapid development of graphic processing units (GPUs) and high-performance computing (HPC) infrastructures, are gaining importance when image processing is feasible. However, the interpretability of machine learning predictions so that doctors can understand them, trust them and gain useful insights for the clinical practice is still rarely considered, which is a factor that needs to be improved to enhance doctors' predictive capacity and achieve individualised therapies in the near future.


Asunto(s)
Antineoplásicos/uso terapéutico , Aprendizaje Automático , Terapia Molecular Dirigida , Proteínas de Neoplasias/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Medicina de Precisión , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Redes Neurales de la Computación
6.
Cancers (Basel) ; 13(4)2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33670655

RESUMEN

BACKGROUND: Fascin1 is the key actin-bundling protein involved in cancer invasion and metastasis whose expression is associated with bad prognosis in tumor from different origins. METHODS: In the present study, virtual screening (VS) was performed for the search of Fascin1 inhibitors and RAL, an FDA-approved inhibitor of human immunodeficiency virus-1 (HIV-1) integrase, was identified as a potential Fascin1 inhibitor. Biophysical techniques including nuclear magnetic resonance (NMR) and differential scanning fluorimetry (DSF) were carried out in order to confirm RAL as a Fascin1 blocker. The effect of RAL on actin-bundling activity Fascin1 was assessed by transmission electron microscopy (TEM), immunofluorescence, migration, and invasion assays on two human colorectal adenocarcinoma cell lines: HCT-116 and DLD-1. In addition, the anti-metastatic potential of RAL was in vivo evaluated by using the zebrafish animal model. RESULTS: NMR and DSF confirmed in silico predictions and TEM demonstrated the RAL-induced disorganization of the actin structure compared to control conditions. The protrusion of lamellipodia in cancer cell line overexpressing Fascin1 (HCT-116) was abolished in the presence of this drug. By following the addition of RAL, migration of HCT-116 and DLD-1 cell lines was significantly inhibited. Finally, using endogenous and exogenous models of Fascin1 expression, the invasive capacity of colorectal tumor cells was notably impaired in the presence of RAL in vivo assays; without undesirable cytotoxic effects. CONCLUSION: The current data show the in vitro and in vivo efficacy of the antiretroviral drug RAL in inhibiting human colorectal cancer cells invasion and metastasis in a Fascin1-dependent manner.

7.
Food Chem ; 348: 129108, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-33540300

RESUMEN

Monoamine oxidase A (MAO-A) is a major enzyme responsible for the deamination of neurotransmitters such as serotonin (5-HT) in the central nervous system. The decrease in 5-HT levels is accompanied by disorders at the affective and somatic levels, leading to depression and disorders of the satiety center. The aim of this study was to evaluate the degree of MAO-A inhibition by chlorogenic acids, as well as green, light-, and dark-roasted coffee extracts and bioactive compounds from beans of the species Coffea canephora and Coffea arabica. Data for analysis was obtained using isothermal titration calorimetry and molecular docking. The results showed that caffeine and ferulic acid, as well as green Robusta coffee, demonstrated the greatest inhibition of MAO-A activity, which may increase the bioavailability of serotonin. We believe that green coffee shows potential antidepressant activity by inhibiting MAO-A, and may be used for treating depression and potentially, type 2 diabetes.


Asunto(s)
Café/química , Inhibidores de la Monoaminooxidasa/farmacología , Monoaminooxidasa/metabolismo , Serotonina/metabolismo , Cafeína/análisis , Ácido Clorogénico/análisis , Diabetes Mellitus Tipo 2/metabolismo , Inhibidores de la Monoaminooxidasa/química , Semillas/química
8.
Chem Commun (Camb) ; 57(3): 395-398, 2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33326535

RESUMEN

Inhibition of immunomodulating enzyme indoleamine 2,3-dioxygenase 1 (IDO1) is considered one of the potential approaches in the fight against cancer and other diseases. Comprehensive biophysical and cellular studies have shown that quinine derivatives effectively inhibit the activity of IDO1. Mechanistic studies revealed that the potent quinine derivatives compete with heme for binding to apo-IDO1 and perturb its reversible binding propensity to apo-IDO1 via the formation of a heme-inhibitor complex. This IDO1 inhibitory pathway could provide new avenues to immunotherapy-based drug discovery strategies.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Quinina/farmacología , Inhibidores Enzimáticos/química , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/inmunología , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Estructura Molecular , Quinina/química
9.
J Chem Inf Model ; 61(1): 467-480, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33320652

RESUMEN

Acetylcholinesterase is a prime target for therapeutic intervention in Alzheimer's disease. Acetylcholinesterase inhibitors (AChEIs) are used to improve cognitive abilities, playing therefore an important role in disease management. Drug repurposing screening has been performed on a corporate chemical library containing 11 353 compounds using a target fishing approach comprising three-dimensional (3D) shape similarity and pharmacophore modeling against an approved drug database, Drugbank. This initial screening identified 108 hits. Among them, eight molecules showed structural similarity to the known AChEI drug, pyridostigmine. Further structure-based screening using a pharmacophore-guided rescoring method identifies one more potential hit. Experimental evaluations of the identified hits sieve out a highly selective AChEI scaffold. Further lead optimization using a substructure search approach identifies 24 new potential hits. Three of the 24 compounds (compounds 10b, 10h, and 10i) based on a 6-(2-(pyrrolidin-1-yl)pyrimidin-4-yl)-thiazolo[3,2-a]pyrimidine scaffold showed highly promising AChE inhibition ability with IC50 values of 13.10 ± 0.53, 16.02 ± 0.46, and 6.22 ± 0.54 µM, respectively. Moreover, these compounds are highly selective toward AChE. Compound 10i shows AChE inhibitory activity similar to a known Food and Drug Administration (FDA)-approved drug, galantamine, but with even better selectivity. Interaction analysis reveals that hydrophobic and hydrogen-bonding interactions are the primary driving forces responsible for the observed high affinity of the compound with AChE.


Asunto(s)
Enfermedad de Alzheimer , Inhibidores de la Colinesterasa , Acetilcolinesterasa , Enfermedad de Alzheimer/tratamiento farmacológico , Inhibidores de la Colinesterasa/farmacología , Humanos , Ligandos , Simulación del Acoplamiento Molecular
10.
J Chem Inf Model ; 60(9): 4124-4130, 2020 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-32692571

RESUMEN

The DIA-DB is a web server for the prediction of diabetes drugs that uses two different and complementary approaches: (a) comparison by shape similarity against a curated database of approved antidiabetic drugs and experimental small molecules and (b) inverse virtual screening of the input molecules chosen by the users against a set of therapeutic protein targets identified as key elements in diabetes. As a proof of concept DIA-DB was successfully applied in an integral workflow for the identification of the antidiabetic chemical profile in a complex crude plant extract. To this end, we conducted the extraction and LC-MS based chemical profile analysis of Sclerocarya birrea and subsequently utilized this data as input for our server. The server is open to all users, registration is not necessary, and a detailed report with the results of the prediction is sent to the user by email once calculations are completed. This is a novel public domain database and web server specific for diabetes drugs and can be accessed online through http://bio-hpc.eu/software/dia-db/.


Asunto(s)
Diabetes Mellitus , Preparaciones Farmacéuticas , Computadores , Bases de Datos Factuales , Diabetes Mellitus/tratamiento farmacológico , Hipoglucemiantes , Internet , Programas Informáticos
11.
J Chem Inf Model ; 60(2): 684-699, 2020 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-31961683

RESUMEN

Carbohydrates are well known for their physicochemical, biological, functional, and therapeutic characteristics. Unfortunately, their chemical nature imposes severe challenges for the structural elucidation of these phenomena, impairing not only the depth of our understanding of carbohydrates but also the development of new biotechnological and therapeutic applications based on these molecules. In the recent past, the amount of structural information, obtained mainly from X-ray crystallography, has increased progressively, as well as its quality. In this context, the current work presents a global analysis of the carbohydrate information available in the Protein Data Bank (PDB). From high quality structures, it is clear that most of the data are highly concentrated on a few sets of residue types, on their monosaccharidic forms, and connected by a small diversity of glycosidic linkages. The geometries of these linkages can be mostly associated with the types of linkages instead of residues, while the level of puckering distortion was characterized, quantified, and located in a pseudorotational equilibrium landscape, not only to local minima but also to transitional states. These qualitative and quantitative analyses offer a global picture of the carbohydrate structural content in the PDB, potentially supporting the building of new models for carbohydrate-related biological phenomena at the atomistic level, including new developments on force field parameters.


Asunto(s)
Carbohidratos/química , Bases de Datos de Proteínas , Conformación de Carbohidratos , Secuencia de Carbohidratos , Glicosilación , Modelos Moleculares
12.
Molecules ; 24(22)2019 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-31703341

RESUMEN

Culinary herbs and spices are widely used as a traditional medicine in the treatment of diabetes and its complications, and there are several scientific studies in the literature supporting the use of these medicinal plants. However, there is often a lack of knowledge on the bioactive compounds of these herbs and spices and their mechanisms of action. The aim of this study was to use inverse virtual screening to provide insights into the bioactive compounds of common herbs and spices, and their potential molecular mechanisms of action in the treatment of diabetes. In this study, a library of over 2300 compounds derived from 30 common herbs and spices were screened in silico with the DIA-DB web server against 18 known diabetes drug targets. Over 900 compounds from the herbs and spices library were observed to have potential anti-diabetic activity and liquorice, hops, fennel, rosemary, and fenugreek were observed to be particularly enriched with potential anti-diabetic compounds. A large percentage of the compounds were observed to be potential polypharmacological agents regulating three or more anti-diabetic drug targets and included compounds such as achillin B from yarrow, asparasaponin I from fenugreek, bisdemethoxycurcumin from turmeric, carlinoside from lemongrass, cinnamtannin B1 from cinnamon, crocin from saffron and glabridin from liquorice. The major targets identified for the herbs and spices compounds were dipeptidyl peptidase-4 (DPP4), intestinal maltase-glucoamylase (MGAM), liver receptor homolog-1 (NR5A2), pancreatic alpha-amylase (AM2A), peroxisome proliferator-activated receptor alpha (PPARA), protein tyrosine phosphatase non-receptor type 9 (PTPN9), and retinol binding protein-4 (RBP4) with over 250 compounds observed to be potential inhibitors of these particular protein targets. Only bay leaves, liquorice and thyme were found to contain compounds that could potentially regulate all 18 protein targets followed by black pepper, cumin, dill, hops and marjoram with 17 protein targets. In most cases more than one compound within a given plant could potentially regulate a particular protein target. It was observed that through this multi-compound-multi target regulation of these specific protein targets that the major anti-diabetic effects of reduced hyperglycemia and hyperlipidemia of the herbs and spices could be explained. The results of this study, taken together with the known scientific literature, indicated that the anti-diabetic potential of common culinary herbs and spices was the result of the collective action of more than one bioactive compound regulating and restoring several dysregulated and interconnected diabetic biological processes.


Asunto(s)
Diabetes Mellitus/tratamiento farmacológico , Inhibidores Enzimáticos , Hipoglucemiantes , Plantas Medicinales/química , Especias , Diabetes Mellitus/enzimología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/uso terapéutico , Hipoglucemiantes/química , Hipoglucemiantes/uso terapéutico
13.
Heart Views ; 20(2): 56-59, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31462960

RESUMEN

We present a 65-year-old African American woman who was found to have pericardial effusion secondary to cardiac sarcoid. Pericardial effusion is a rare manifestation of cardiac sarcoid. All cases of sustemic sarcoid should be evaluated for cardiac involvement which can be difficult to detect.

14.
Molecules ; 24(10)2019 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-31137754

RESUMEN

Medicinal plants containing complex mixtures of several compounds with various potential beneficial biological effects are attractive treatment interventions for a complex multi-faceted disease like diabetes. In this study, compounds identified from African medicinal plants were evaluated for their potential anti-diabetic activity. A total of 867 compounds identified from over 300 medicinal plants were screened in silico with the DIA-DB web server (http://bio-hpc.eu/software/dia-db/) against 17 known anti-diabetic drug targets. Four hundred and thirty compounds were identified as potential inhibitors, with 184 plants being identified as the sources of these compounds. The plants Argemone ochroleuca, Clivia miniata, Crinum bulbispermum, Danais fragans, Dioscorea dregeana, Dodonaea angustifolia, Eucomis autumnalis, Gnidia kraussiana, Melianthus comosus, Mondia whitei, Pelargonium sidoides, Typha capensis, Vinca minor, Voacanga Africana, and Xysmalobium undulatum were identified as new sources rich in compounds with a potential anti-diabetic activity. The major targets identified for the natural compounds were aldose reductase, hydroxysteroid 11-beta dehydrogenase 1, dipeptidyl peptidase 4, and peroxisome proliferator-activated receptor delta. More than 30% of the compounds had five or more potential targets. A hierarchical clustering analysis coupled with a maximum common substructure analysis revealed the importance of the flavonoid backbone for predicting potential activity against aldose reductase and hydroxysteroid 11-beta dehydrogenase 1. Filtering with physiochemical and the absorption, distribution, metabolism, excretion and toxicity (ADMET) descriptors identified 28 compounds with favorable ADMET properties. The six compounds-crotofoline A, erythraline, henningsiine, nauclefidine, vinburnine, and voaphylline-were identified as novel potential multi-targeted anti-diabetic compounds, with favorable ADMET properties for further drug development.


Asunto(s)
Hipoglucemiantes/análisis , Hipoglucemiantes/farmacología , Internet , Plantas Medicinales/química , Interfaz Usuario-Computador , Disponibilidad Biológica , Hipoglucemiantes/química , Simulación del Acoplamiento Molecular
15.
Chem Biodivers ; 16(5): e1900017, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30891904

RESUMEN

Cholinergic therapy based on cholinesterase (ChE) inhibitory drugs is the mainstay for the treatment of Alzheimer's disease. Therefore, an extensive research has been continuing for the discovery of drug candidates as inhibitors of acetyl- and butyrylcholinesterase. In this study, two natural molecules, e. g. hyperforin and hyuganin C were tested in vitro for their AChE and BChE inhibitory activity. Both of the compounds were ineffective against AChE, whereas hyperforin (IC50 =141.60±3.39 µm) and hyuganin C (IC50 =38.86±1.69 µm) were found to be the highly active inhibitors of BChE as compared to galantamine (IC50 =46.58±0.91 µm) which was used as the reference. Then, these molecules were further proceeded to molecular docking experiments in order to establish their interactions at the active site of BChE. The molecular docking results indicated that both of them are able to block the access to key residues in the catalytic triad of the enzyme, while they complement some of the hydrophobic residues of the cavity, what is consistent with our in vitro data. While both compounds were predicted as mutagenic, only hyuganin C showed hepatotoxicity in in silico analysis. According to whole outcomes that we obtained, particularly hyuganin C besides hyperforin are the promising BChE inhibitors, which can be the promising compounds for AD therapy.


Asunto(s)
Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/química , Cumarinas/química , Floroglucinol/análogos & derivados , Terpenos/química , Acetilcolinesterasa/química , Acetilcolinesterasa/metabolismo , Apiaceae/química , Sitios de Unión , Butirilcolinesterasa/química , Dominio Catalítico , Cumarinas/aislamiento & purificación , Simulación del Acoplamiento Molecular , Floroglucinol/química , Extractos Vegetales/química , Relación Estructura-Actividad Cuantitativa , Termodinámica
16.
Rev. bras. farmacogn ; 27(5): 636-640, Sept.-Oct. 2017. tab, graf
Artículo en Inglés | LILACS | ID: biblio-898704

RESUMEN

Abstract Phlomidoschema parviflorum (Benth.) Vved. (Basionym: Stachys parviflora Benth.) Lamiaceae, have significance medicinal importance as it is used in number of health disorders including diarrhea, fever, sore mouth and throat, internal bleeding, weaknesses of the liver and heart genital tumors, sclerosis of the spleen, inflammatory tumors and cancerous ulcers. The present contribution deals with the sedative and muscle relaxant like effects of diterpenoids trivially named stachysrosane and stachysrosane, isolated from the ethyl acetate soluble fraction of P. parviflorum. Both compounds (at 5, 10 and 15 mg/kg, i.p) were assessed for their in vivo sedative and muscle relaxant activity in open field and inclined plane test, respectively. The geometries of both compounds were optimized with density functional theory. The molecular docking of both compounds were performed with receptor gamma aminobutyric acid. Both compounds showed marked activity in a dose dependent manner. The docking studies showed that both compounds interact strongly with important residues in receptor gamma aminobutyric acid. The reported data demonstrate that both compounds exhibited significant sedative and muscle relaxant-like effects in animal models, which opens a door for novel therapeutic applications.

17.
Bioorg Chem ; 71: 285-293, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28267985

RESUMEN

The development of biologically active molecules based on molecular recognition is an attractive and challenging task in medicinal chemistry and the molecules that can activate/deactivate certain receptors are of great medical interest. In this contribution, selected pyrimidine/piperidine derivatives were synthesized and tested for the ability to activate/deactivate Aryl hydrocarbon receptor (AhR) and Glucocorticoid receptor (GR). Tested compounds are shown to activate the receptors but to much lesser extent than positive controls, dioxin and dexamethasone for Ahr and GR, respectively. However, some of them antagonized the positive controls action. Although further in vivo studies are needed to fully characterize the bioactivities of these compounds, the reported in vitro evidences demonstrate that they might be used as the modulators of AhR and GR activities.


Asunto(s)
Piperidinas/química , Piperidinas/farmacología , Pirimidinas/química , Pirimidinas/farmacología , Receptores de Hidrocarburo de Aril/metabolismo , Receptores de Glucocorticoides/metabolismo , Descubrimiento de Drogas , Células HeLa , Células Hep G2 , Humanos , Modelos Moleculares , Receptores de Hidrocarburo de Aril/agonistas , Receptores de Hidrocarburo de Aril/antagonistas & inhibidores , Receptores de Glucocorticoides/agonistas , Receptores de Glucocorticoides/antagonistas & inhibidores
18.
Carbohydr Polym ; 161: 63-70, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28189247

RESUMEN

Chitosan is a biocompatible polysaccharide with positive Z potential which can stabilize negative charged nanoparticles. Silk fibroin nanoparticles and citrate gold nanoparticles, both with negative Z potential, but they form aggregates at physiological ionic strength. In this work, we study the behavior of chitosan in solution when the ionic strength of the medium is increased and how the concentration of chitosan and the proportion of the two components (chitosan and AuNP or SFN) significantly affect the stability and size of the nanocomposites formed. In addition to experimental measurements, molecular modeling were used to gain insight into how chitosan interacts with silk fibroin monomers, and to identify the main energetic interactions involved in the process. The optimum values for obtaining the smallest and most homogeneous stable nanocomposites were obtained and two different ways of organization through which chitosan may exert its stabilizing effect were suggested.


Asunto(s)
Quitosano/química , Fibroínas/química , Nanopartículas del Metal/química , Nanopartículas/química , Oro/química , Nanocompuestos/química
19.
Biomed Pharmacother ; 88: 109-113, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28103503

RESUMEN

BACKGROUND: Diospyros lotus Linn commonly known as date-plum, or Caucasian persimmon has multiple uses in folk medicine. Various parts of this plant is used for alleviating lumbago, dysponea, hemorrhage, insomnia, and hiccup. The plant extracts possess a variety of biological activities, such as anti-inflammatory, sedative, febrifuge, anti-microbial, vermifuge, and anti-hypertensive. AIM/HYPOTHESIS: The aim of the present work is to investigate the sedative-hypnotic effect of a rare dimeric napthoquione 1 obtained from the chloroform soluble fraction of D. lotus extracts. METHODS: Compound 1, di-naphthodiospyrol at 5, 10, and 15mg/kg intraperitoneal doses was assessed for its in vivo sedative effect in an open-field using a phenobarbitone-induced sleeping time model. The geometry of di-naphthodiospyrol was also optimized with the aid of density functional theory. In addition, molecular docking of compound 1 was performed with the receptor GABAA. RESULTS: The animal protocol-based assay showed significant sedative-hypnotic-like effects of compound 1 at various test doses (5, 10, and 15mg/kg i.p.). Docking studies indicated that this compound interacts strongly with important residues in receptor GABAA. CONCLUSIONS: Results from this investigation reveal that compound 1 possesses sedative-hypnotic- like properties which can be of interest in therapeutic research.


Asunto(s)
Diospyros/química , Hipnóticos y Sedantes/farmacología , Simulación del Acoplamiento Molecular , Naftoles/farmacología , Naftoquinonas/química , Animales , Hipnóticos y Sedantes/química , Ratones , Modelos Animales , Naftoles/química , Fenobarbital , Receptores de GABA/metabolismo , Sueño/efectos de los fármacos
20.
Phytochemistry ; 133: 33-44, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27817931

RESUMEN

Cholinesterase inhibition is one of the most treatment strategies against Alzheimer's disease (AD) where metal accumulation is also strongly associated with pathology of the disease. In the current study, we assessed inhibitory effect against acetyl- (AChE) and butyrylcholinesterase (BChE) and metal-chelating capacity of twelve diterpenes: arucadiol, miltirone, tanshinone IIa, 1-oxomiltirone, cryptotanshinone, 1,2-didehydromiltirone, 1,2-didehydrotanshinone IIa, 1ß-hydroxycryptotanshinone, 15,16-dihydrotanshinone, tanshinone I, isotanshinone II, 1(S)-hydroxytanshinone IIa, and rosmarinic acid, isolated from Perovskia atriplicifolia and Salvia glutinosa. The compounds were tested at 10 µg/mL using ELISA microtiter assays against AChE and BChE. QSAR and molecular docking studies have been also performed on the active compounds. All of the compounds showed higher [e.g., IC50 = 1.12 ± 0.07 µg/mL for 1,2-didehydromiltirone, IC50 = 1.15 ± 0.07 µg/mL for cryptotanshinone, IC50 = 1.20 ± 0.03 µg/mL for arucadiol, etc.)] or closer [1,2-didehydrotanshinone IIa (IC50 = 5.98 ± 0.49 µg/mL) and 1(S)-hydroxytanshinone IIa (IC50 = 5.71 ± 0.27 µg/mL)] inhibition against BChE as compared to that of galanthamine (IC50 = 12.56 ± 0.37 µg/mL), whereas only 15,16-dihydrotanshinone moderately inhibited AChE (65.17 ± 1.39%). 1,2-Didehydrotanshinone IIa (48.94 ± 0.26%) and 1(S)-hydroxytanshinone IIa (47.18 ± 5.10%) possessed the highest metal-chelation capacity. The present study affords an evidence for the fact that selective BChE inhibitors should be further investigated as promising candidate molecules for AD therapy.


Asunto(s)
Butirilcolinesterasa/efectos de los fármacos , Inhibidores de la Colinesterasa/farmacología , Cinamatos/aislamiento & purificación , Cinamatos/farmacología , Depsidos/aislamiento & purificación , Depsidos/farmacología , Diterpenos/farmacología , Medicamentos Herbarios Chinos/aislamiento & purificación , Medicamentos Herbarios Chinos/farmacología , Lamiaceae/química , Salvia/química , Abietanos/química , Enfermedad de Alzheimer/tratamiento farmacológico , Cinamatos/química , Depsidos/química , Diterpenos/química , Diterpenos/aislamiento & purificación , Medicamentos Herbarios Chinos/química , Lamiaceae/genética , Fenantrenos/química , Relación Estructura-Actividad Cuantitativa , Salvia/genética , Ácido Rosmarínico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...