Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 9(10): eade1285, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36897939

RESUMEN

Efficient genome engineering is critical to understand and use microbial functions. Despite recent development of tools such as CRISPR-Cas gene editing, efficient integration of exogenous DNA with well-characterized functions remains limited to model bacteria. Here, we describe serine recombinase-assisted genome engineering, or SAGE, an easy-to-use, highly efficient, and extensible technology that enables selection marker-free, site-specific genome integration of up to 10 DNA constructs, often with efficiency on par with or superior to replicating plasmids. SAGE uses no replicating plasmids and thus lacks the host range limitations of other genome engineering technologies. We demonstrate the value of SAGE by characterizing genome integration efficiency in five bacteria that span multiple taxonomy groups and biotechnology applications and by identifying more than 95 heterologous promoters in each host with consistent transcription across environmental and genetic contexts. We anticipate that SAGE will rapidly expand the number of industrial and environmental bacteria compatible with high-throughput genetics and synthetic biology.


Asunto(s)
Sistemas CRISPR-Cas , Ingeniería Genética , Edición Génica , Bacterias/genética , ADN
2.
Nat Commun ; 13(1): 4925, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-35995792

RESUMEN

Muconic acid is a bioprivileged molecule that can be converted into direct replacement chemicals for incumbent petrochemicals and performance-advantaged bioproducts. In this study, Pseudomonas putida KT2440 is engineered to convert glucose and xylose, the primary carbohydrates in lignocellulosic hydrolysates, to muconic acid using a model-guided strategy to maximize the theoretical yield. Using adaptive laboratory evolution (ALE) and metabolic engineering in a strain engineered to express the D-xylose isomerase pathway, we demonstrate that mutations in the heterologous D-xylose:H+ symporter (XylE), increased expression of a major facilitator superfamily transporter (PP_2569), and overexpression of aroB encoding the native 3-dehydroquinate synthase, enable efficient muconic acid production from glucose and xylose simultaneously. Using the rationally engineered strain, we produce 33.7 g L-1 muconate at 0.18 g L-1 h-1 and a 46% molar yield (92% of the maximum theoretical yield). This engineering strategy is promising for the production of other shikimate pathway-derived compounds from lignocellulosic sugars.


Asunto(s)
Pseudomonas putida , Xilosa , Fermentación , Glucosa/metabolismo , Ingeniería Metabólica , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Ácido Sórbico/análogos & derivados , Xilosa/metabolismo
4.
Metab Eng ; 67: 250-261, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34265401

RESUMEN

Poly(ethylene terephthalate) (PET) is the most abundantly consumed synthetic polyester and accordingly a major source of plastic waste. The development of chemocatalytic approaches for PET depolymerization to monomers offers new options for open-loop upcycling of PET, which can leverage biological transformations to higher-value products. To that end, here we perform four sequential metabolic engineering efforts in Pseudomonas putida KT2440 to enable the conversion of PET glycolysis products via: (i) ethylene glycol utilization by constitutive expression of native genes, (ii) terephthalate (TPA) catabolism by expression of tphA2IIA3IIBIIA1II from Comamonas and tpaK from Rhodococcus jostii, (iii) bis(2-hydroxyethyl) terephthalate (BHET) hydrolysis to TPA by expression of PETase and MHETase from Ideonella sakaiensis, and (iv) BHET conversion to a performance-advantaged bioproduct, ß-ketoadipic acid (ßKA) by deletion of pcaIJ. Using this strain, we demonstrate production of 15.1 g/L ßKA from BHET at 76% molar yield in bioreactors and conversion of catalytically depolymerized PET to ßKA. Overall, this work highlights the potential of tandem catalytic deconstruction and biological conversion as a means to upcycle waste PET.


Asunto(s)
Tereftalatos Polietilenos , Pseudomonas putida , Adipatos , Burkholderiales , Etilenos , Hidrolasas , Ácidos Ftálicos , Pseudomonas putida/genética , Rhodococcus
5.
Nat Commun ; 12(1): 2261, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33859194

RESUMEN

Expanding the portfolio of products that can be made from lignin will be critical to enabling a viable bio-based economy. Here, we engineer Pseudomonas putida for high-yield production of the tricarboxylic acid cycle-derived building block chemical, itaconic acid, from model aromatic compounds and aromatics derived from lignin. We develop a nitrogen starvation-detecting biosensor for dynamic two-stage bioproduction in which itaconic acid is produced during a non-growth associated production phase. Through the use of two distinct itaconic acid production pathways, the tuning of TCA cycle gene expression, deletion of competing pathways, and dynamic regulation, we achieve an overall maximum yield of 56% (mol/mol) and titer of 1.3 g/L from p-coumarate, and 1.4 g/L titer from monomeric aromatic compounds produced from alkali-treated lignin. This work illustrates a proof-of-principle that using dynamic metabolic control to reroute carbon after it enters central metabolism enables production of valuable chemicals from lignin at high yields by relieving the burden of constitutively expressing toxic heterologous pathways.


Asunto(s)
Lignina/metabolismo , Ingeniería Metabólica/métodos , Pseudomonas putida/metabolismo , Succinatos/metabolismo , Álcalis/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Basidiomycota/enzimología , Basidiomycota/genética , Técnicas Biosensibles , Burkholderia/enzimología , Burkholderia/genética , Carbono/metabolismo , Ciclo del Ácido Cítrico/genética , Ácidos Cumáricos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Microbiología Industrial/métodos , Lignina/química , Prueba de Estudio Conceptual , Pseudomonas putida/genética
6.
Metab Eng ; 59: 64-75, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31931111

RESUMEN

Pseudomonas putida KT2440 has received increasing attention as an important biocatalyst for the conversion of diverse carbon sources to multiple products, including the olefinic diacid, cis,cis-muconic acid (muconate). P. putida has been previously engineered to produce muconate from glucose; however, periplasmic oxidation of glucose causes substantial 2-ketogluconate accumulation, reducing product yield and selectivity. Deletion of the glucose dehydrogenase gene (gcd) prevents 2-ketogluconate accumulation, but dramatically slows growth and muconate production. In this work, we employed adaptive laboratory evolution to improve muconate production in strains incapable of producing 2-ketogluconate. Growth-based selection improved growth, but reduced muconate titer. A new muconate-responsive biosensor was therefore developed to enable muconate-based screening using fluorescence activated cell sorting. Sorted clones demonstrated both improved growth and muconate production. Mutations identified by whole genome resequencing of these isolates indicated that glucose metabolism may be dysregulated in strains lacking gcd. Using this information, we used targeted engineering to recapitulate improvements achieved by evolution. Deletion of the transcriptional repressor gene hexR improved strain growth and increased the muconate production rate, and the impact of this deletion was investigated using transcriptomics. The genes gntZ and gacS were also disrupted in several evolved clones, and deletion of these genes further improved strain growth and muconate production. Together, these targets provide a suite of modifications that improve glucose conversion to muconate by P. putida in the context of gcd deletion. Prior to this work, our engineered strain lacking gcd generated 7.0 g/L muconate at a productivity of 0.07 g/L/h and a 38% yield (mol/mol) in a fed-batch bioreactor. Here, the resulting strain with the deletion of hexR, gntZ, and gacS achieved 22.0 g/L at 0.21 g/L/h and a 35.6% yield (mol/mol) from glucose in similar conditions. These strategies enabled enhanced muconic acid production and may also improve production of other target molecules from glucose in P. putida.


Asunto(s)
Glucosa/metabolismo , Ingeniería Metabólica , Pseudomonas putida , Ácido Sórbico/análogos & derivados , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Ácido Sórbico/metabolismo
7.
J Ind Microbiol Biotechnol ; 46(12): 1793-1804, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31595456

RESUMEN

Adaptive laboratory evolution (ALE) is a powerful tool used to increase strain fitness in the presence of environmental stressors. If production and strain fitness can be coupled, ALE can be used to increase product formation. In earlier work, carotenoids hyperproducing mutants were obtained using an ALE strategy. Here, de novo mutations were identified in hyperproducers, and reconstructed mutants were explored to determine the exact impact of each mutation on production and tolerance. A single mutation in YMRCTy1-3 conferred increased carotenoid production, and when combined with other beneficial mutations led to further increased ß-carotene production. Findings also suggest that the ALE strategy selected for mutations that confer increased carotenoid production as primary phenotype. Raman spectroscopy analysis and total lipid quantification revealed positive correlation between increased lipid content and increased ß-carotene production. Finally, we demonstrated that the best combinations of mutations identified for ß-carotene production were also beneficial for production of lycopene.


Asunto(s)
Carotenoides/metabolismo , Saccharomyces cerevisiae/genética , Mutación , Fenotipo , Saccharomyces cerevisiae/metabolismo , Espectrometría Raman
8.
Biotechnol Biofuels ; 12: 295, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31890023

RESUMEN

BACKGROUND: Efficient conversion of plant biomass to commodity chemicals is an important challenge that needs to be solved to enable a sustainable bioeconomy. Deconstruction of biomass to sugars and lignin yields a wide variety of low molecular weight carbon substrates that need to be funneled to product. Pseudomonas putida KT2440 has emerged as a potential platform for bioconversion of lignin and the other components of plant biomass. However, P. putida is unable to natively utilize several of the common sugars in hydrolysate streams, including galactose. RESULTS: In this work, we integrated a De Ley-Doudoroff catabolic pathway for galactose catabolism into the chromosome of P. putida KT2440, using genes from several different organisms. We found that the galactonate catabolic pathway alone (DgoKAD) supported slow growth of P. putida on galactose. Further integration of genes to convert galactose to galactonate and to optimize the transporter expression level resulted in a growth rate of 0.371 h-1. Additionally, the best-performing strain was demonstrated to co-utilize galactose with glucose. CONCLUSIONS: We have engineered P. putida to catabolize galactose, which will allow future engineered strains to convert more plant biomass carbon to products of interest. Further, by demonstrating co-utilization of glucose and galactose, continuous bioconversion processes for mixed sugar streams are now possible.

9.
FEMS Microbiol Lett ; 363(5): fnw017, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26818252

RESUMEN

Biobased production of butanol promises a more sustainable route for industrial production. However, butanol toxicity remains a barrier for achieving high product titers. Investigation into butanol stress has shed some light on its modes of toxicity. Unfortunately, there still remain significant shortfalls in our understanding of the complex interactions of butanol with cells. To address this knowledge gap, a diverse range of tools have been employed to gain a better understanding of the adverse effects of butanol on the cell. These findings have lead to the identification of possible molecular mechanisms associated with butanol tolerance, which can be harnessed for future strain development efforts. This review focuses on recent efforts to address the toxicity of butanol in microbial producers and offers some perspectives on the future direction of this research sector.


Asunto(s)
Butanoles/farmacología , Clostridium/efectos de los fármacos , Farmacorresistencia Bacteriana/genética , Solventes/farmacología , Biocombustibles , Clostridium/genética , Ácidos Grasos/química , Solventes/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...