Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Arch Toxicol ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38951189

RESUMEN

Natural toxins produced by Alternaria fungi include the mycotoxins alternariol, tenuazonic acid and altertoxins I and II. Several of these toxins have shown high toxicity even at low levels including genotoxic, mutagenic, and estrogenic effects. However, the metabolic effects of toxin exposure from Alternaria are understudied, especially in the liver as a key target. To gain insight into the impact of Alternaria toxin exposure on the liver metabolome, rats (n = 21) were exposed to either (1) a complex culture extract with defined toxin profiles from Alternaria alternata (50 mg/kg body weight), (2) the isolated, highly genotoxic altertoxin-II (ATX-II) (0.7 mg/kg of body weight) or (3) a solvent control. The complex mixture contained a spectrum of Alternaria toxins including a controlled dose of ATX-II, matching the concentration of the isolated ATX-II. Liver samples were collected after 24 h and analyzed via liquid chromatography-high-resolution mass spectrometry (LC-HRMS). Authentic reference standards (> 100) were used to identify endogenous metabolites and exogenous compounds from the administered exposures in tandem with SWATH-acquired MS/MS data which was used for non-targeted analysis/screening. Screening for metabolites produced by Alternaria revealed several compounds solely isolated in the liver of rats exposed to the complex culture, confirming results from a previously performed targeted biomonitoring study. This included the altersetin and altercrasin A that were tentatively identified. An untargeted metabolomics analysis found upregulation of acylcarnitines in rats receiving the complex Alternaria extract as well as downregulation of riboflavin in rats exposed to both ATX-II and the complex mixture. Taken together, this work provides a mechanistic view of Alternari toxin exposure and new suspect screening insights into hardly characterized Alternaria toxins.

2.
Front Nutr ; 10: 1244692, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37727634

RESUMEN

Background: The Aronia melanocarpa fruit is emerging as a health food owing to its high polyphenolic content and associated antioxidant activity. Antioxidant-rich foods, such as Aronia fruit, may counter inflammatory stimuli and positively modulate the gut microbiome. However, a comprehensive study characterizing the impact of Aronia fruit supplementation has not been completed. Therefore, we completed analyses measuring the metabolic, microbial, and inflammatory effects of a diet supplemented with Aronia fruit juice. Method: Humanized mice were generated by colonizing gnotobiotic mice with microbiomes from human donors presenting disparate inflammation levels. Blood and fecal samples were collected throughout the course of an 8-week dietary intervention with either Aronia juice or a carbohydrate-matched beverage alone (2 weeks) or in combination with a high-fat diet to induce inflammation (6 weeks). Samples were analyzed using 16S rRNA gene sequencing (stool) and liquid chromatography-mass spectrometry (serum). Results: We demonstrated transfer of microbiome composition and diversity and metabolic characteristics from humans with low and high inflammation levels to second-generation humanized mice. Aronia supplementation provided robust protection against high-fat diet induced metabolic and microbiome changes that were dependent in part on microbiome donor. Aronia induced increases in bacteria of the Eggerthellaceae genus (7-fold) which aligns with its known ability to metabolize (poly)phenols and in phosphatidylcholine metabolites which are consistent with improved gut barrier function. The gut microbiome from a low inflammation phenotype donor provided protection against high-fat diet induced loss of microbiome ß-diversity and global metabolomic shifts compared to that from the high inflammation donor. Conclusion: These metabolic changes elucidate pathway-specific drivers of reduced inflammation stemming from both Aronia and the gut microbiota.

3.
Nat Commun ; 14(1): 218, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36639365

RESUMEN

Familial dysautonomia (FD) is a rare genetic neurologic disorder caused by impaired neuronal development and progressive degeneration of both the peripheral and central nervous systems. FD is monogenic, with >99.4% of patients sharing an identical point mutation in the elongator acetyltransferase complex subunit 1 (ELP1) gene, providing a relatively simple genetic background in which to identify modifiable factors that influence pathology. Gastrointestinal symptoms and metabolic deficits are common among FD patients, which supports the hypothesis that the gut microbiome and metabolome are altered and dysfunctional compared to healthy individuals. Here we show significant differences in gut microbiome composition (16 S rRNA gene sequencing of stool samples) and NMR-based stool and serum metabolomes between a cohort of FD patients (~14% of patients worldwide) and their cohabitating, healthy relatives. We show that key observations in human subjects are recapitulated in a neuron-specific Elp1-deficient mouse model, and that cohousing mutant and littermate control mice ameliorates gut microbiome dysbiosis, improves deficits in gut transit, and reduces disease severity. Our results provide evidence that neurologic deficits in FD alter the structure and function of the gut microbiome, which shifts overall host metabolism to perpetuate further neurodegeneration.


Asunto(s)
Disautonomía Familiar , Microbioma Gastrointestinal , Humanos , Ratones , Animales , Disautonomía Familiar/genética , Disbiosis/metabolismo , Neuronas/metabolismo , Sistema Nervioso Central/metabolismo
4.
Sci Rep ; 12(1): 18707, 2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36333441

RESUMEN

Research focused on microbial populations of thermoalkaline springs has been driven in a large part by the lure of discovering functional enzymes with industrial applications in high-pH and high temperature environments. While several studies have focused on understanding the fundamental ecology of these springs, the small molecule profiles of thermoalkaline springs have largely been overlooked. To better understand how geochemistry, small molecule composition, and microbial communities are connected, we conducted a three-year study of the Five Sisters (FS) springs that included high-resolution geochemical measurements, 16S rRNA sequencing of the bacterial and archaeal community, and mass spectrometry-based metabolite and extracellular small molecule characterization. Integration of the four datasets facilitated a comprehensive analysis of the interwoven thermoalkaline spring system. Over the course of the study, the microbial population responded to changing environmental conditions, with archaeal populations decreasing in both relative abundance and diversity compared to bacterial populations. Decreases in the relative abundance of Archaea were associated with environmental changes that included decreased availability of specific nitrogen- and sulfur-containing extracellular small molecules and fluctuations in metabolic pathways associated with nitrogen cycling. This multi-factorial analysis demonstrates that the microbial community composition is more closely correlated with pools of extracellular small molecules than with the geochemistry of the thermal springs. This is a novel finding and suggests that a previously overlooked component of thermal springs may have a significant impact on microbial community composition.


Asunto(s)
Manantiales de Aguas Termales , Femenino , Humanos , Manantiales de Aguas Termales/microbiología , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Parques Recreativos , Filogenia , Archaea , Bacterias/genética , Nitrógeno/metabolismo
5.
iScience ; 24(8): 102817, 2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34355150

RESUMEN

Chronic low-grade inflammation is a subclinical condition directly and indirectly linked to the development of a wide range of diseases responsible for the vast majority of morbidity. To examine mechanisms coupled to chronic disease, a group of overweight and obese human subjects without known inflammatory diseases participated in a high-fat meal challenge as an acute inflammation stimulus. Analysis of serum metabolites grouped by baseline cytokine levels revealed that single samples had little power in differentiating groups. However, an analysis that incorporated temporal response separated inflammatory response phenotypes and allowed us to create a metabolic signature of inflammation which revealed metabolic components that are crucial to a cytokine-mediated inflammation response. The use of temporal response, rather than a single time point, improved metabolomic prediction of high postprandial inflammation responses and led to the development of a dynamic biosignature as a potential tool for stratifying risk to a wide range of diseases.

6.
FEMS Microbiol Ecol ; 97(2)2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33501490

RESUMEN

The described diversity within the domain Archaea has recently expanded due to advances in sequencing technologies, but many habitats that likely harbor novel lineages of archaea remain understudied. Knowledge of archaea within natural and engineered hydrothermal systems, such as hot springs and engineered subsurface habitats, has been steadily increasing, but the majority of the work has focused on archaea living in acidic or circumneutral environments. The environmental pressures exerted by the combination of high temperatures and high pH likely select for divergent communities and distinct metabolic pathways from those observed in acidic or circumneutral systems. In this review, we examine what is currently known about the archaea found in thermoalkaline environments, focusing on the detection of novel lineages and knowledge of the ecology, metabolic pathways and functions of these populations and communities. We also discuss the potential of emerging multi-omics approaches, including proteomics and metabolomics, to enhance our understanding of archaea within extreme thermoalkaline systems.


Asunto(s)
Archaea , Manantiales de Aguas Termales , Archaea/genética , Bacterias , Ecología , Ecosistema , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA