Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
NPJ Syst Biol Appl ; 6(1): 24, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32753656

RESUMEN

Candidatus Liberibacter asiaticus (CLas) has been associated with Huanglongbing, a lethal vector-borne disease affecting citrus crops worldwide. While comparative genomics has provided preliminary insights into the metabolic capabilities of this uncultured microorganism, a comprehensive functional characterization is currently lacking. Here, we reconstructed and manually curated genome-scale metabolic models for the six CLas strains A4, FL17, gxpsy, Ishi-1, psy62, and YCPsy, in addition to a model of the closest related culturable microorganism, L. crescens BT-1. Predictions about nutrient requirements and changes in growth phenotypes of CLas were confirmed using in vitro hairy root-based assays, while the L. crescens BT-1 model was validated using cultivation assays. Host-dependent metabolic phenotypes were revealed using expression data obtained from CLas-infected citrus trees and from the CLas-harboring psyllid Diaphorina citri Kuwayama. These results identified conserved and unique metabolic traits, as well as strain-specific interactions between CLas and its hosts, laying the foundation for the development of model-driven Huanglongbing management strategies.


Asunto(s)
Interacciones Huésped-Patógeno , Liberibacter/metabolismo , Fenotipo , Citrus/microbiología , Liberibacter/fisiología , Enfermedades de las Plantas/microbiología
2.
Appl Environ Microbiol ; 86(8)2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32086307

RESUMEN

Huanglongbing (HLB) is a destructive citrus disease that is lethal to all commercial citrus plants, making it the most serious citrus disease and one of the most serious plant diseases. Because of the severity of HLB and the paucity of effective control measures, we structured this study to encompass the entirety of the citrus microbiome and the chemistries associated with that microbial community. We describe the spatial niche diversity of bacteria and fungi associated with citrus roots, stems, and leaves using traditional microbial culturing integrated with culture-independent methods. Using the culturable sector of the citrus microbiome, we created a microbial repository using a high-throughput bulk culturing and microbial identification pipeline. We integrated an in vitro agar diffusion inhibition bioassay into our culturing pipeline that queried the repository for antimicrobial activity against Liberibacter crescens, a culturable surrogate for the nonculturable "Candidatus Liberibacter asiaticus" bacterium associated with HLB. We identified microbes with robust inhibitory activity against L. crescens that include the fungi Cladosporium cladosporioides and Epicoccum nigrum and bacterial species of Pantoea, Bacillus, and Curtobacterium Purified bioactive natural products with anti-"Ca. Liberibacter asiaticus" activity were identified from the fungus C. cladosporioides Bioassay-guided fractionation of an organic extract of C. cladosporioides yielded the natural products cladosporols A, C, and D as the active agents against L. crescens This work serves as a foundation for unraveling the complex chemistries associated with the citrus microbiome to begin to understand the functional roles of members of the microbiome, with the long-term goal of developing anti-"Ca Liberibacter asiaticus" bioinoculants that thrive in the citrus holosystem.IMPORTANCE Globally, citrus is threatened by huanglongbing (HLB), and the lack of effective control measures is a major concern of farmers, markets, and consumers. There is compelling evidence that plant health is a function of the activities of the plant's associated microbiome. Using Liberibacter crescens, a culturable surrogate for the unculturable HLB-associated bacterium "Candidatus Liberibacter asiaticus," we tested the hypothesis that members of the citrus microbiome produce potential anti-"Ca Liberibacter asiaticus" natural products with potential anti-"Ca Liberibacter asiaticus" activity. A subset of isolates obtained from the microbiome inhibited L. crescens growth in an agar diffusion inhibition assay. Further fractionation experiments linked the inhibitory activity of the fungus Cladosporium cladosporioides to the fungus-produced natural products cladosporols A, C, and D, demonstrating dose-dependent antagonism to L. crescens.


Asunto(s)
Citrus/microbiología , Microbiota , Enfermedades de las Plantas/microbiología , Rhizobiaceae/aislamiento & purificación , Rhizobiaceae/fisiología , Microbiología del Suelo , Fenómenos Fisiológicos Bacterianos , Hongos/fisiología
3.
Plant Dis ; 103(7): 1464-1473, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30998450

RESUMEN

Colletotrichum Corda, 1831 species are well-documented pathogens of citrus that are associated with leaf and fruit anthracnose diseases. However, their role in twig and shoot dieback diseases of citrus has recently become more prominent. Recent surveys of orchards in the Central Valley of California have revealed C. gloeosporioides and a previously undocumented species, C. karstii, to be associated with twig and shoot dieback. Pathogenicity tests using clementine (cv. 4B) indicated that both C. karstii and C. gloeosporioides are capable of producing lesions following inoculation of citrus stems. Pathogenicity tests also revealed C. karstii to be the most aggressive fungal species producing the longest lesions after 15 months. The majority of spores trapped during this study were trapped during or closely following a precipitation event with the majority of spores being trapped from January through May. These findings confirm C. karstii as a new pathogen of citrus in California.


Asunto(s)
Colletotrichum , Virulencia , California , Colletotrichum/clasificación , Colletotrichum/patogenicidad , Colletotrichum/fisiología , Enfermedades de las Plantas/microbiología , Esporas Fúngicas/aislamiento & purificación
4.
Sci Rep ; 9(1): 20324, 2019 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-31889131

RESUMEN

Chemotherapy induced peripheral neuropathy (CIPN), a toxic side effect of some cancer treatments, negatively impacts patient outcomes and drastically reduces survivor's quality of life (QOL). Uncovering the mechanisms driving chemotherapy-induced CIPN is urgently needed to facilitate the development of effective treatments, as currently there are none. Observing that C57BL/6 (B6) and 129SvEv (129) mice are respectively sensitive and resistant to Paclitaxel-induced pain, we investigated the involvement of the gut microbiota in this extreme phenotypic response. Reciprocal gut microbiota transfers between B6 and 129 mice as well as antibiotic depletion causally linked gut microbes to Paclitaxel-induced pain sensitivity and resistance. Microglia proliferated in the spinal cords of Paclitaxel treated mice harboring the pain-sensitive B6 microbiota but not the pain-resistant 129 microbiota, which exhibited a notable absence of infiltrating immune cells. Paclitaxel decreased the abundance of Akkermansia muciniphila, which could compromise barrier integrity resulting in systemic exposure to bacterial metabolites and products - that acting via the gut-immune-brain axis - could result in altered brain function. Other bacterial taxa that consistently associated with both bacteria and pain as well as microglia and pain were identified, lending support to our hypothesis that microglia are causally involved in CIPN, and that gut bacteria are drivers of this phenotype.


Asunto(s)
Antineoplásicos/efectos adversos , Microbioma Gastrointestinal , Neuralgia/etiología , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Biodiversidad , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Masculino , Ratones , Microglía/efectos de los fármacos , Microglía/metabolismo , Neuralgia/metabolismo , Paclitaxel/efectos adversos , Paclitaxel/farmacología , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Médula Espinal/patología
5.
Plant Dis ; 102(7): 1307-1315, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30673581

RESUMEN

Fusarium dieback (FD) is a new vascular disease of hardwood trees caused by Fusarium spp. and other associated fungal species which are vectored by two recently introduced and highly invasive species of ambrosia beetle (Euwallacea spp. nr. fornicatus). One of these ambrosia beetles is known as the polyphagous shot hole borer (PSHB) and the other as the Kuroshio shot hole borer (KSHB). Together with the fungi that they vector, this pest-disease complex is known as the shot hole borer-Fusarium dieback (SHB-FD) complex. Mitigation of this pest-disease complex currently relies on tree removal; however, this practice is expensive and impractical given the wide host range and rapid advancement of the beetles throughout hardwoods in southern California. This study reports on the assessment of various pesticides for use in the management of SHB-FD. In vitro screening of 13 fungicides revealed that pyraclostrobin, trifloxystrobin, and azoxystrobin generally have lower effective concentration that reduces 50% of mycelial growth (EC50) values across all fungal symbionts of PSHB and KSHB; metconazole was found to have lower EC50 values for Fusarium spp. and Paracremonium pembeum. Triadimefon and fluxapyroxad were not capable of inhibiting any fungal symbiont at the concentrations tested. A 1-year field study showed that two insecticides, emamectin benzoate alone and in combination with propiconazole, and bifenthrin, could significantly reduce SHB attacks. Two injected fungicides (tebuconazole and a combination of carbendazim and debacarb) and one spray fungicide (metconazole) could also significantly reduce SHB attacks. Bioassays designed to assess fungicide retention 1 year postapplication revealed that six of the seven fungicides exhibited some level of inhibition in vitro and all thiabendazole-treated trees sampled exhibiting inhibition. This study has identified several pesticides which can be implemented as part of an integrated pest management strategy to reduce SHB infestation in low to moderately infested landscape California sycamore trees and potentially other landscape trees currently affected by SHB-FD.


Asunto(s)
Escarabajos/microbiología , Fungicidas Industriales/farmacología , Fusarium/fisiología , Árboles/microbiología , Árboles/parasitología , Animales , California , Escarabajos/clasificación , Fusarium/clasificación , Interacciones Huésped-Patógeno/efectos de los fármacos , Insectos Vectores/microbiología , Insecticidas/farmacología , Especies Introducidas , Ivermectina/análogos & derivados , Ivermectina/farmacología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/parasitología , Piretrinas/farmacología , Especificidad de la Especie , Triazoles/farmacología
6.
Nat Prod Res ; 31(23): 2768-2777, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28278617

RESUMEN

The winter annual grass Bromus tectorum (cheatgrass) has become highly invasive in semiarid ecosystems of western North America. In these areas, a natural phenomenon, complete cheatgrass stand failure ('die-off'), is apparently caused by a complex interaction among soilborne fungal pathogens. Several Fusarium strains belonging to the Fusarium tricinctum species complex were isolated from these soils and found to be pathogenic on B. tectorum seeds. One of these strains was produced in cheatgrass seed culture to evaluate its ability to produce phytotoxins. Six metabolites were isolated and identified by spectroscopic methods (essentially 1D and 2D NMR and ESIMS) as acuminatopyrone (1), blumenol A (2), chlamydosporol (3), isochlamydosporol (4), ergosterol (5) and 4-hydroxybenzaldehyde (6). Upon testing against B. tectorum in a seedling bioassay, (6) the coleoptile and radicle length of cheatgrass seedlings were significantly reduced. Compounds 1 and 2 showed moderate activity, while 3-5 were not significantly different from the control.


Asunto(s)
Bromus/efectos de los fármacos , Fusarium/metabolismo , Herbicidas/química , Herbicidas/farmacología , Benzaldehídos/química , Benzaldehídos/farmacología , Ecosistema , Fusarium/aislamiento & purificación , Espectroscopía de Resonancia Magnética , Malezas/efectos de los fármacos , Pironas/química , Pironas/farmacología , Plantones/efectos de los fármacos , Semillas/microbiología , Microbiología del Suelo , Espectrometría de Masa por Ionización de Electrospray
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...