Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin J Am Soc Nephrol ; 11(9): 1675-1679, 2016 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-27185523

RESUMEN

Plasma samples collected in tubes containing separator gels have replaced serum samples for most chemistry tests in many hospital and commercial laboratories. Use of plasma samples for blood tests in the dialysis population eliminates delays in sample processing while waiting for clotting to complete, laboratory technical issues associated with fibrin formation, repeat sample collection, and patient care issues caused by delay of results because of incompletely clotted specimens. Additionally, a larger volume of plasma is produced than serum for the same amount of blood collected. Plasma samples are also acceptable for most chemical tests involved in the care of patients with ESRD. This information becomes very important when United States regulatory requirements for ESRD inadvertently limit the type of sample that can be used for government reporting, quality assessment, and value-based payment initiatives. In this narrative, we summarize the renal community experience and how the subsequent resolution of the acceptability of phosphorus levels measured from serum and plasma samples may have significant implications in the country's continued development of a value-based Medicare ESRD Quality Incentive Program.


Asunto(s)
Fallo Renal Crónico/sangre , Fósforo/análisis , Plasma/química , Diálisis Renal/normas , Suero/química , Humanos , Fallo Renal Crónico/terapia , Mejoramiento de la Calidad , Indicadores de Calidad de la Atención de Salud , Estados Unidos
2.
Med Phys ; 41(12): 121713, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25471960

RESUMEN

PURPOSE: High-quality radiation therapy using highly conformal dose distributions and image-guided techniques requires optimum machine delivery performance. In this work, a monitoring system for multileaf collimator (MLC) performance, integrating semiautomated MLC quality control (QC) tests and statistical process control tools, was developed. The MLC performance monitoring system was used for almost a year on two commercially available MLC models. Control charts were used to establish MLC performance and assess test frequency required to achieve a given level of performance. MLC-related interlocks and servicing events were recorded during the monitoring period and were investigated as indicators of MLC performance variations. METHODS: The QC test developed as part of the MLC performance monitoring system uses 2D megavoltage images (acquired using an electronic portal imaging device) of 23 fields to determine the location of the leaves with respect to the radiation isocenter. The precision of the MLC performance monitoring QC test and the MLC itself was assessed by detecting the MLC leaf positions on 127 megavoltage images of a static field. After initial calibration, the MLC performance monitoring QC test was performed 3-4 times/week over a period of 10-11 months to monitor positional accuracy of individual leaves for two different MLC models. Analysis of test results was performed using individuals control charts per leaf with control limits computed based on the measurements as well as two sets of specifications of ± 0.5 and ± 1 mm. Out-of-specification and out-of-control leaves were automatically flagged by the monitoring system and reviewed monthly by physicists. MLC-related interlocks reported by the linear accelerator and servicing events were recorded to help identify potential causes of nonrandom MLC leaf positioning variations. RESULTS: The precision of the MLC performance monitoring QC test and the MLC itself was within ± 0.22 mm for most MLC leaves and the majority of the apparent leaf motion was attributed to beam spot displacements between irradiations. The MLC QC test was performed 193 and 162 times over the monitoring period for the studied units and recalibration had to be repeated up to three times on one of these units. For both units, rate of MLC interlocks was moderately associated with MLC servicing events. The strongest association with the MLC performance was observed between the MLC servicing events and the total number of out-of-control leaves. The average elapsed time for which the number of out-of-specification or out-of-control leaves was within a given performance threshold was computed and used to assess adequacy of MLC test frequency. CONCLUSIONS: A MLC performance monitoring system has been developed and implemented to acquire high-quality QC data at high frequency. This is enabled by the relatively short acquisition time for the images and automatic image analysis. The monitoring system was also used to record and track the rate of MLC-related interlocks and servicing events. MLC performances for two commercially available MLC models have been assessed and the results support monthly test frequency for widely accepted ± 1 mm specifications. Higher QC test frequency is however required to maintain tighter specification and in-control behavior.


Asunto(s)
Radioterapia Conformacional/normas , Algoritmos , Fenómenos Biofísicos , Calibración , Humanos , Control de Calidad , Radioterapia Conformacional/estadística & datos numéricos , Radioterapia Guiada por Imagen/normas , Radioterapia Guiada por Imagen/estadística & datos numéricos , Radioterapia de Intensidad Modulada/normas , Radioterapia de Intensidad Modulada/estadística & datos numéricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA