RESUMEN
Different types of environmental pollution cause negative consequences to ecosystems throughout the globe, which humanity is now trying to mitigate. It is necessary to know the level of pollution problems in the immediate environment, to evaluate the impact of human activities, and mitigation strategies necessary to ensure habitability. For this reason, in this work, a low-cost pollution measurement station for outdoor or indoor use is proposed and developed that measures air pollution (particulate matter and CO2), noise (level and direction), light pollution (power and multispectral), and also relative humidity and ambient temperature. The system stores the data in an SD memory or transmits data in real-time to the internet via WiFi. The purposes of the system are to be used in environmental studies, to deploy monitoring networks, or to ensure the habitability of a living or working space. The prototype integrates the measurement of the different sources of contamination in a single compact device at USD$ 628.12 without sacrificing measurement accuracy. The system is validated for each variable with reference equipment, obtaining an average error of approximately 2.67% in the measurement of all the variables measured. The system is easy to assemble and has an option for power supply using solar photovoltaic devices and an alternative for connection to 2G/3G mobile networks.
RESUMEN
Albedo is the percentage of radiation that a given surface reflects. Its study is important to evaluate thermal effects in buildings, generation capacity with bifacial panels, among others. In this work, the design and validation of a low-cost mobile albedometer is presented, which measures the reflection in 8 spectral bands in the visible, additionally the system is equipped with a Global Navigation Satellite System (GNSS) receiver, to reference its position and an Inertial Measurement Unit (IMU) to know its absolute orientation, make corrections in real time or detect errors. The purpose of designing the mobile device is to measure a larger area and, since it is georeferenced, it is to feed GIS tools that allow designers to use the information.
RESUMEN
Measuring climatic conditions is a fundamental task for a wide array of scientific and practical fields. Weather variables change depending on position and time, especially in tropical zones without seasons. Additionally, the increasing development of precision or smart agriculture makes it necessary to improve the measurement systems while widely distributing them at the location of crops. For these reasons, in this work, the design, construction and fabrication of an adaptable autonomous solar-powered climatic station with wireless 3G or WiFi communication is presented. The station measures relative humidity, temperature, atmospheric pressure, precipitation, wind speed, and light radiation. In addition, the system monitors the charge state of the main battery and the energy generated by the photovoltaic module to act as a reference cell for solar energy generation capability and agrivoltaic potential in the installation area. The station can be remotely controlled and reconfigured. The collected data from all sensors can be uploaded to the cloud in real-time. This initiative aims at enhancing the development of free and open source hardware that can be used by the agricultural sector and that allows professionals in the area to improve harvest yield and production conditions.
RESUMEN
The measurement of outdoor environmental and climatic variables is needed for many applications such as precision agriculture, environmental pollution monitoring, and the study of ecosystems. Some sensors deployed for these purposes such as temperature, relative humidity, atmospheric pressure, and carbon dioxide sensors require protection from climate factors to avoid bias. Radiation shields hold and protect sensors to avoid this bias, but commercial systems are limited, often expensive, and difficult to implement in low-cost contexts or large deployments for collaborative sensing. To overcome these challenges, this work presents an open source, easily adapted and customized design of a radiation shield. The device can be fabricated with inexpensive off-the-shelf parts and 3-D printed components and can be adapted to protect and isolate different types of sensors. Two material approaches are tested here: polylactic acid (PLA), the most common 3-D printing filament, and acrylonitrile styrene acrylate (ASA), which is known to offer better resistance against UV radiation, greater hardness, and generally higher resistance to degradation. To validate the designs, the two prototypes were installed on a custom outdoor meteorological system and temperature and humidity measurements were made in several locations for one month and compared against a proprietary system and a system with no shield. The 3-D printed materials were also both tested multiple times for one month for UV stability of their mechanical properties, their optical transmission and deformation under outdoor high-heat conditions. The results showed that ASA is the preferred material for this design and that the open source radiation shield could match the performance of proprietary systems. The open source system can be constructed for about nine US dollars, which enables mass development of flexible weather stations for monitoring needed in smart agriculture.