Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros










Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 384, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724935

RESUMEN

BACKGROUND: Semi-dwarfing alleles are used widely in cereals to confer improved lodging resistance and assimilate partitioning. The most widely deployed semi-dwarfing alleles in rice and barley encode the gibberellin (GA)-biosynthetic enzyme GA 20-OXIDASE2 (GA20OX2). The hexaploid wheat genome carries three homoeologous copies of GA20OX2, and because of functional redundancy, loss-of-function alleles of a single homoeologue would not be selected in wheat breeding programmes. Instead, approximately 70% of wheat cultivars carry gain-of-function mutations in REDUCED HEIGHT 1 (RHT1) genes that encode negative growth regulators and are degraded in response to GA. Semi-dwarf Rht-B1b or Rht-D1b alleles encode proteins that are insensitive to GA-mediated degradation. However, because RHT1 is expressed ubiquitously these alleles have pleiotropic effects that confer undesirable traits in some environments. RESULTS: We have applied reverse genetics to combine loss-of-function alleles in all three homoeologues of wheat GA20OX2 and its paralogue GA20OX1 and evaluated their performance in three years of field trials. ga20ox1 mutants exhibited a mild height reduction (approximately 3%) suggesting GA20OX1 plays a minor role in stem elongation in wheat. ga20ox2 mutants have reduced GA1 content and are 12-32% shorter than their wild-type segregants, comparable to the effect of the Rht-D1b 'Green Revolution' allele. The ga20ox2 mutants showed no significant negative effects on yield components in the spring wheat variety 'Cadenza'. CONCLUSIONS: Our study demonstrates that chemical mutagenesis can expand genetic variation in polyploid crops to uncover novel alleles despite the difficulty in identifying appropriate mutations for some target genes and the negative effects of background mutations. Field experiments demonstrate that mutations in GA20OX2 reduce height in wheat, but it will be necessary to evaluate the effect of these alleles in different genetic backgrounds and environments to determine their value in wheat breeding as alternative semi-dwarfing alleles.


Asunto(s)
Fenotipo , Proteínas de Plantas , Triticum , Triticum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mutación , Oryza/genética , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Alelos , Giberelinas/metabolismo , Genes de Plantas
2.
Front Plant Sci ; 14: 1247680, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37786514

RESUMEN

Introduction: Polyphenol oxidases (PPO) are dual activity metalloenzymes that catalyse the production of quinones. In plants, PPO activity may contribute to biotic stress resistance and secondary metabolism but is undesirable for food producers because it causes the discolouration and changes in flavour profiles of products during post-harvest processing. In wheat (Triticum aestivum L.), PPO released from the aleurone layer of the grain during milling results in the discolouration of flour, dough, and end-use products, reducing their value. Loss-of-function mutations in the PPO1 and PPO2 paralogous genes on homoeologous group 2 chromosomes confer reduced PPO activity in the wheat grain. However, limited natural variation and the proximity of these genes complicates the selection of extremely low-PPO wheat varieties by recombination. The goal of the current study was to edit all copies of PPO1 and PPO2 to drive extreme reductions in PPO grain activity in elite wheat varieties. Results: A CRISPR/Cas9 construct with one single guide RNA (sgRNA) targeting a conserved copper binding domain was used to edit all seven PPO1 and PPO2 genes in the spring wheat cultivar 'Fielder'. Five of the seven edited T1 lines exhibited significant reductions in PPO activity, and T2 lines had PPO activity up to 86.7% lower than wild-type. The same construct was transformed into the elite winter wheat cultivars 'Guardian' and 'Steamboat', which have five PPO1 and PPO2 genes. In these varieties PPO activity was reduced by >90% in both T1 and T2 lines. In all three varieties, dough samples from edited lines exhibited reduced browning. Discussion: This study demonstrates that multi-target editing at late stages of variety development could complement selection for beneficial alleles in crop breeding programs by inducing novel variation in loci inaccessible to recombination.

3.
Pathogens ; 12(6)2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37375510

RESUMEN

Fusarium wilt of banana is a devastating disease that has decimated banana production worldwide. Host resistance to Fusarium oxysporum f. sp. Cubense (Foc), the causal agent of this disease, is genetically dissected in this study using two Musa acuminata ssp. Malaccensis segregating populations, segregating for Foc Tropical (TR4) and Subtropical (STR4) race 4 resistance. Marker loci and trait association using 11 SNP-based PCR markers allowed the candidate region to be delimited to a 12.9 cM genetic interval corresponding to a 959 kb region on chromosome 3 of 'DH-Pahang' reference assembly v4. Within this region, there was a cluster of pattern recognition receptors, namely leucine-rich repeat ectodomain containing receptor-like protein kinases, cysteine-rich cell-wall-associated protein kinases, and leaf rust 10 disease-resistance locus receptor-like proteins, positioned in an interspersed arrangement. Their transcript levels were rapidly upregulated in the resistant progenies but not in the susceptible F2 progenies at the onset of infection. This suggests that one or several of these genes may control resistance at this locus. To confirm the segregation of single-gene resistance, we generated an inter-cross between the resistant parent 'Ma850' and a susceptible line 'Ma848', to show that the STR4 resistance co-segregated with marker '28820' at this locus. Finally, an informative SNP marker 29730 allowed the locus-specific resistance to be assessed in a collection of diploid and polyploid banana plants. Of the 60 lines screened, 22 lines were predicted to carry resistance at this locus, including lines known to be TR4-resistant, such as 'Pahang', 'SH-3362', 'SH-3217', 'Ma-ITC0250', and 'DH-Pahang/CIRAD 930'. Additional screening in the International Institute for Tropical Agriculture's collection suggests that the dominant allele is common among the elite 'Matooke' NARITA hybrids, as well as in other triploid or tetraploid hybrids derived from East African highland bananas. Fine mapping and candidate gene identification will allow characterization of molecular mechanisms underlying the TR4 resistance. The markers developed in this study can now aid the marker-assisted selection of TR4 resistance in breeding programs around the world.

4.
Sci Rep ; 12(1): 17224, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36241895

RESUMEN

In order to maintain global food security, it will be necessary to increase yields of the cereal crops that provide most of the calories and protein for the world's population, which includes common wheat (Triticum aestivum L.). An important wheat yield component is the number of grain-holding spikelets which form on the spike during inflorescence development. Characterizing the gene regulatory networks controlling the timing and rate of inflorescence development will facilitate the selection of natural and induced gene variants that contribute to increased spikelet number and yield. In the current study, co-expression and gene regulatory networks were assembled from a temporal wheat spike transcriptome dataset, revealing the dynamic expression profiles associated with the progression from vegetative meristem to terminal spikelet formation. Consensus co-expression networks revealed enrichment of several transcription factor families at specific developmental stages including the sequential activation of different classes of MIKC-MADS box genes. This gene regulatory network highlighted interactions among a small number of regulatory hub genes active during terminal spikelet formation. Finally, the CLAVATA and WUSCHEL gene families were investigated, revealing potential roles for TtCLE13, TtWOX2, and TtWOX7 in wheat meristem development. The hypotheses generated from these datasets and networks further our understanding of wheat inflorescence development.


Asunto(s)
Inflorescencia , Triticum , Grano Comestible/genética , Grano Comestible/metabolismo , Regulación de la Expresión Génica de las Plantas , Meristema , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Front Plant Sci ; 13: 928949, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35845691

RESUMEN

Wheat streak mosaic virus (WSMV) is an economically important viral pathogen that threatens global wheat production, particularly in the Great Plains of the United States. The Wsm2 locus confers resistance to WSMV and has been widely deployed in common wheat varieties adapted to this region. Characterizing the underlying causative genetic variant would contribute to our understanding of viral resistance mechanisms in wheat and aid the development of perfect markers for breeding. In this study, linkage mapping in a doubled-haploid (DH) mapping population confirmed Wsm2 as a major locus conferring WSMV resistance in wheat. The Wsm2 flanking markers were mapped to a 4.0 Mbp region at the distal end of chromosome 3BS containing 142 candidate genes. Eight haplotypes were identified from seventeen wheat genotypes collected from different agroecological zones, indicating that Wsm2 lies in a dynamic region of the genome with extensive structural variation and that it is likely a rare allele in most available genome assemblies of common wheat varieties. Exome sequencing of the variety "Snowmass", which carries Wsm2, revealed several loss-of-function mutations and copy number variants in the 142 candidate genes within the Wsm2 interval. Six of these genes are differentially expressed in "Snowmass" compared to "Antero," a variety lacking Wsm2, including a gene that encodes a nucleotide-binding site leucine-rich repeat (NBS-LRR) type protein with homology to RPM1. A de novo assembly of unmapped RNA-seq reads identified nine transcripts expressed only in "Snowmass," three of which are also induced in response to WSMV inoculation. This study sheds light on the variation underlying Wsm2 and provides a list of candidate genes for subsequent validation.

7.
G3 (Bethesda) ; 12(2)2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-34751373

RESUMEN

To improve the efficiency of high-density genotype data storage and imputation in bread wheat (Triticum aestivum L.), we applied the Practical Haplotype Graph (PHG) tool. The Wheat PHG database was built using whole-exome capture sequencing data from a diverse set of 65 wheat accessions. Population haplotypes were inferred for the reference genome intervals defined by the boundaries of the high-quality gene models. Missing genotypes in the inference panels, composed of wheat cultivars or recombinant inbred lines genotyped by exome capture, genotyping-by-sequencing (GBS), or whole-genome skim-seq sequencing approaches, were imputed using the Wheat PHG database. Though imputation accuracy varied depending on the method of sequencing and coverage depth, we found 92% imputation accuracy with 0.01× sequence coverage, which was slightly lower than the accuracy obtained using the 0.5× sequence coverage (96.6%). Compared to Beagle, on average, PHG imputation was ∼3.5% (P-value < 2 × 10-14) more accurate, and showed 27% higher accuracy at imputing a rare haplotype introgressed from a wild relative into wheat. We found reduced accuracy of imputation with independent 2× GBS data (88.6%), which increases to 89.2% with the inclusion of parental haplotypes in the database. The accuracy reduction with GBS is likely associated with the small overlap between GBS markers and the exome capture dataset, which was used for constructing PHG. The highest imputation accuracy was obtained with exome capture for the wheat D genome, which also showed the highest levels of linkage disequilibrium and proportion of identity-by-descent regions among accessions in the PHG database. We demonstrate that genetic mapping based on genotypes imputed using PHG identifies SNPs with a broader range of effect sizes that together explain a higher proportion of genetic variance for heading date and meiotic crossover rate compared to previous studies.


Asunto(s)
Polimorfismo de Nucleótido Simple , Triticum , Animales , Exoma , Genotipo , Haplotipos/genética , Almacenamiento y Recuperación de la Información , Triticum/genética
8.
Mol Ecol Resour ; 22(4): 1559-1581, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34839580

RESUMEN

Many Drosophila species differ widely in their distributions and climate niches, making them excellent subjects for evolutionary genomic studies. Here, we have developed a database of high-quality assemblies for 46 Drosophila species and one closely related Zaprionus. Fifteen of the genomes were newly sequenced, and 20 were improved with additional sequencing. New or improved annotations were generated for all 47 species, assisted by new transcriptomes for 19. Phylogenomic analyses of these data resolved several previously ambiguous relationships, especially in the melanogaster species group. However, it also revealed significant phylogenetic incongruence among genes, mainly in the form of incomplete lineage sorting in the subgenus Sophophora but also including asymmetric introgression in the subgenus Drosophila. Using the phylogeny as a framework and taking into account these incongruences, we then screened the data for genome-wide signals of adaptation to different climatic niches. First, phylostratigraphy revealed relatively high rates of recent novel gene gain in three temperate pseudoobscura and five desert-adapted cactophilic mulleri subgroup species. Second, we found differing ratios of nonsynonymous to synonymous substitutions in several hundred orthologues between climate generalists and specialists, with trends for significantly higher ratios for those in tropical and lower ratios for those in temperate-continental specialists respectively than those in the climate generalists. Finally, resequencing natural populations of 13 species revealed tropics-restricted species generally had smaller population sizes, lower genome diversity and more deleterious mutations than the more widespread species. We conclude that adaptation to different climates in the genus Drosophila has been associated with large-scale and multifaceted genomic changes.


Asunto(s)
Drosophila , Genoma , Adaptación Fisiológica/genética , Animales , Drosophila/genética , Genómica , Humanos , Filogenia
9.
Mol Breed ; 42(4): 17, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37309457

RESUMEN

To provide food security for a growing world population, it will be necessary to increase yields of staple crops such as wheat (Triticum aestivum L.). Yield is a complex, polygenic trait influenced by grain weight and number, which are negatively correlated with one another. Spikelet number is an important determinant of grain number, but allelic variants impacting its expression are often associated with heading date, constraining their use in wheat germplasm that must be adapted for specific environments. Identification and characterization of genetic variants affecting spikelet number will increase selection efficiency through their deployment in breeding programs. In this study, a quantitative trait locus (QTL) on chromosome arm 6BL for spikelet number was identified and validated using an association mapping panel, a recombinant inbred line population, and seven derived heterogeneous inbred families. The superior allele, QSn.csu-6Bb, was associated with an increase of 0.248 to 0.808 spikelets per spike across multiple environments that varied for mean spikelet number. Despite epistatic interactions between QSn.csu-6B and three other loci (WAPO-A1, VRN-D3, and PPD-B1), genotypes with a greater number of superior alleles at these loci consistently exhibit higher spikelet number. The frequency of superior alleles at these loci varies among winter wheat varieties adapted to different latitudes of the US Great Plains, revealing opportunities for breeders to select for increased spikelet number using simple molecular markers. This work lays the foundation for the positional cloning of the genetic variant underlying the QSn.csu-6B QTL to strengthen our understanding of spikelet number determination in wheat. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01288-7.

10.
BMC Plant Biol ; 21(1): 302, 2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34187359

RESUMEN

BACKGROUND: Understanding the determinants of free asparagine concentration in wheat grain is necessary to reduce levels of the processing contaminant acrylamide in baked and toasted wheat products. Although crop management strategies can help reduce asparagine concentrations, breeders have limited options to select for genetic variation underlying this trait. Asparagine synthetase enzymes catalyse a critical step in asparagine biosynthesis in plants and, in wheat, are encoded by five homeologous gene triads that exhibit distinct expression profiles. Within this family, TaASN2 genes are highly expressed during grain development but TaASN-B2 is absent in some varieties. RESULTS: Natural genetic diversity in the asparagine synthetase gene family was assessed in different wheat varieties revealing instances of presence/absence variation and other polymorphisms, including some predicted to affect the function of the encoded protein. The presence and absence of TaASN-B2 was determined across a range of UK and global common wheat varieties and related species, showing that the deletion encompassing this gene was already present in some wild emmer wheat genotypes. Expression profiling confirmed that TaASN2 transcripts were only detectable in the grain, while TaASN3.1 genes were highly expressed during the early stages of grain development. TaASN-A2 was the most highly expressed TaASN2 homeologue in most assayed wheat varieties. TaASN-B2 and TaASN-D2 were expressed at similar, lower levels in varieties possessing TaASN-B2. Expression of TaASN-A2 and TaASN-D2 did not increase to compensate for the absence of TaASN-B2, so total TaASN2 expression was lower in varieties lacking TaASN-B2. Consequently, free asparagine concentrations in field-produced grain were, on average, lower in varieties lacking TaASN-B2, although the effect was lost when free asparagine accumulated to very high concentrations as a result of sulphur deficiency. CONCLUSIONS: Selecting wheat genotypes lacking the TaASN-B2 gene may be a simple and rapid way for breeders to reduce free asparagine concentrations in commercial wheat grain.


Asunto(s)
Asparagina/metabolismo , Aspartatoamoníaco Ligasa/genética , Eliminación de Gen , Triticum/genética , Aspartatoamoníaco Ligasa/metabolismo , Calidad de los Alimentos , Genes de Plantas/genética , Estudios de Asociación Genética , Variación Genética , Triticum/enzimología , Triticum/metabolismo
11.
BMC Genomics ; 22(1): 218, 2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33765923

RESUMEN

BACKGROUND: Bowman-Birk inhibitors (BBI) are a family of serine-type protease inhibitors that modulate endogenous plant proteolytic activities during different phases of development. They also inhibit exogenous proteases as a component of plant defense mechanisms, and their overexpression can confer resistance to phytophagous herbivores and multiple fungal and bacterial pathogens. Dicot BBIs are multifunctional, with a "double-headed" structure containing two separate inhibitory loops that can bind and inhibit trypsin and chymotrypsin proteases simultaneously. By contrast, monocot BBIs have a non-functional chymotrypsin inhibitory loop, although they have undergone internal duplication events giving rise to proteins with multiple BBI domains. RESULTS: We used a Hidden Markov Model (HMM) profile-based search to identify 57 BBI genes in the common wheat (Triticum aestivum L.) genome. The BBI genes are unevenly distributed, with large gene clusters in the telomeric regions of homoeologous group 1 and 3 chromosomes that likely arose through a series of tandem gene duplication events. The genomes of wheat progenitors also contain contiguous clusters of BBI genes, suggesting this family underwent expansion before the domestication of common wheat. However, the BBI gene family varied in size among different cultivars, showing this family remains dynamic. Because of these expansions, the BBI gene family is larger in wheat than other monocots such as maize, rice and Brachypodium. We found BBI proteins in common wheat with intragenic homologous duplications of cysteine-rich functional domains, including one protein with four functional BBI domains. This diversification may expand the spectrum of target substrates. Expression profiling suggests that some wheat BBI proteins may be involved in regulating endogenous proteases during grain development, while others were induced in response to biotic and abiotic stresses, suggesting a role in plant defense. CONCLUSIONS: Genome-wide characterization reveals that the BBI gene family in wheat is subject to a high rate of homologous tandem duplication and deletion events, giving rise to a diverse set of encoded proteins. This information will facilitate the functional characterization of individual wheat BBI genes to determine their role in wheat development and stress responses, and their potential application in breeding.


Asunto(s)
Oryza , Inhibidor de la Tripsina de Soja de Bowman-Birk , Fitomejoramiento , Estrés Fisiológico , Triticum/genética , Inhibidor de la Tripsina de Soja de Bowman-Birk/genética
12.
J Exp Bot ; 72(2): 157-160, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33529341
13.
Curr Opin Insect Sci ; 45: 21-27, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33249178

RESUMEN

Wheat curl mite (WCM) is the only known arthropod vector of four wheat viruses, the most important of which is Wheat streak mosaic virus (WSMV). Host resistance to WCM and WSMV is limited to a small number of loci, most of which are introgressed from wild relatives and are often associated with linkage drag and temperature sensitivity. Reports of virulent WCM populations and potential resistance-breaking WSMV isolates highlight the need for more diverse sources of resistance. Genome sequencing will be critical to fully characterize the genetic diversity in WCM and WSMV populations to better understand the incidence of WCM-transmitted viruses and to evaluate the potential stability of resistance genes. Characterizing host resistance genes will help build a mechanistic understanding of wheat-WCM-WSMV interactions and inform strategies to identify and engineer more durable resistance sources.


Asunto(s)
Antibiosis/genética , Ácaros/fisiología , Defensa de la Planta contra la Herbivoria/genética , Enfermedades de las Plantas/virología , Potyviridae/fisiología , Triticum/fisiología , Animales , Triticum/genética
14.
BMC Plant Biol ; 20(1): 297, 2020 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-32600268

RESUMEN

BACKGROUND: Photoperiod signals provide important cues by which plants regulate their growth and development in response to predictable seasonal changes. Phytochromes, a family of red and far-red light receptors, play critical roles in regulating flowering time in response to changing photoperiods. A previous study showed that loss-of-function mutations in either PHYB or PHYC result in large delays in heading time and in the differential regulation of a large number of genes in wheat plants grown in an inductive long day (LD) photoperiod. RESULTS: We found that under non-inductive short-day (SD) photoperiods, phyB-null and phyC-null mutants were taller, had a reduced number of tillers, longer and wider leaves, and headed later than wild-type (WT) plants. The delay in heading between WT and phy mutants was greater in LD than in SD, confirming the importance of PHYB and PHYC in accelerating heading date in LDs. Both mutants flowered earlier in SD than LD, the inverse response to that of WT plants. In both SD and LD photoperiods, PHYB regulated more genes than PHYC. We identified subsets of differentially expressed and alternatively spliced genes that were specifically regulated by PHYB and PHYC in either SD or LD photoperiods, and a smaller set of genes that were regulated in both photoperiods. We found that photoperiod had a contrasting effect on transcript levels of the flowering promoting genes VRN-A1 and PPD-B1 in phyB and phyC mutants compared to the WT. CONCLUSIONS: Our study confirms the major role of both PHYB and PHYC in flowering promotion in LD conditions. Transcriptome characterization revealed an unexpected reversion of the wheat LD plants into SD plants in the phyB-null and phyC-null mutants and identified flowering genes showing significant interactions between phytochromes and photoperiod that may be involved in this phenomenon. Our RNA-seq data provides insight into light signaling pathways in inductive and non-inductive photoperiods and a set of candidate genes to dissect the underlying developmental regulatory networks in wheat.


Asunto(s)
Fotoperiodo , Fitocromo/genética , Transcriptoma , Triticum/genética , Triticum/fisiología , Empalme Alternativo , Genotipo , Fototransducción , Mutación con Pérdida de Función , Fitocromo/fisiología , Fitocromo B/genética , Fitocromo B/fisiología
15.
Appl Environ Microbiol ; 86(10)2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32198167

RESUMEN

Burkholderia sp. strain SG-MS1 and Pseudomonas sp. strain SG-MS2 have previously been found to mineralize (+)-pinoresinol through a common catabolic pathway. Here, we used comparative genomics, proteomics, protein semipurification, and heterologous expression to identify a flavoprotein from the vanillyl alcohol oxidase/p-cresol methyl hydroxylase (VAO/PCMH) enzyme family in SG-MS2 that carries out the initial hydroxylation of (+)-pinoresinol at the benzylic carbon. The cognate gene is translationally coupled with a downstream cytochrome gene, and the cytochrome is required for activity. The flavoprotein has a unique combination of cofactor binding and cytochrome requirements for the VAO/PCMH family. The heterologously expressed enzyme has a Km of 1.17 µM for (+)-pinoresinol. The enzyme is overexpressed in strain SG-MS2 upon exposure to (+)-pinoresinol, along with 45 other proteins, 22 of which were found to be encoded by genes in an approximately 35.1-kb cluster also containing the flavoprotein and cytochrome genes. Homologs of 18 of these 22 genes, plus the flavoprotein and cytochrome genes, were also found in a 38.7-kb cluster in SG-MS1. The amino acid identities of four of the other proteins within the SG-MS2 cluster suggest they catalyze conversion of hydroxylated pinoresinol to protocatechuate and 2-methoxyhydroquinone. Nine other proteins upregulated in SG-MS2 on exposure to (+)-pinoresinol appear to be homologs of proteins known to comprise the protocatechuate and 2-methoxyhydroquinone catabolic pathways, but only three of the cognate genes lie within the cluster containing the flavoprotein and cytochrome genes.IMPORTANCE (+)-Pinoresinol is an important plant defense compound, a major food lignan for humans and some other animals, and the model compound used to study degradation of the ß-ß' linkages in lignin. We report a gene cluster, in one strain each of Pseudomonas and Burkholderia, that is involved in the oxidative catabolism of (+)-pinoresinol. The flavoprotein component of the α-hydroxylase which heads the pathway belongs to the 4-phenol oxidizing (4PO) subgroup of the vanillyl alcohol oxidase/p-cresol methyl hydroxylase (VAO/PCMH) enzyme family but constitutes a novel combination of cofactor and electron acceptor properties for the family. It is translationally coupled with a cytochrome gene whose product is also required for activity. The work casts new light on the biology of (+)-pinoresinol and its transformation to other bioactive molecules. Potential applications of the findings include new options for deconstructing lignin into useful chemicals and the generation of new phytoestrogenic enterolactones from lignans.


Asunto(s)
Proteínas Bacterianas/genética , Flavoproteínas/genética , Furanos/metabolismo , Genes Bacterianos/genética , Lignanos/metabolismo , Pseudomonas/genética , Proteínas Bacterianas/metabolismo , Flavoproteínas/metabolismo , Redes y Vías Metabólicas , Familia de Multigenes , Oxidación-Reducción , Pseudomonas/metabolismo
16.
J Proteome Res ; 19(3): 1037-1051, 2020 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-31995381

RESUMEN

Common wheat (Triticum aestivum L.) is a global staple crop, and insect pests can impact grain yield. The wheat stem sawfly (Cephus cinctus, WSS) is a major wheat pest, and while partial resistance has been deployed by breeding for a solid-stem trait, this trait is affected by environment. Here, a proteomics and metabolomics study was performed on four wheat cultivars to characterize a molecular response to WSS infestation. The cultivars Hatcher (hollow-stem partially tolerant), Conan (semisolid-stem-resistant), and Denali and Reeder (hollow-stem-susceptible) were infested with WSS, and changes in stem proteins and metabolites were characterized using liquid chromatography-mass spectrometry. The proteome was characterized as 1830 proteins that included five major biological processes, including metabolic processes and response to stimuli, and the metabolome (1823 metabolites) spanned eight chemical superclasses, including alkaloids, benzenoids, and lipids. All four varieties had a molecular response to WSS following infestation. Hatcher had the most distinct changes, whereby 62 proteins and 29 metabolites varied in metabolic pathways involving enzymatic detoxification, proteinase inhibition, and antiherbivory compound production via benzoxazinoids, neolignans, and phenolics. Taken together, these data demonstrate variation in the wheat stem molecular response to WSS infestation and support breeding for molecular resistance in hollow-stem cultivars.


Asunto(s)
Himenópteros , Proteómica , Animales , Metaboloma , Metabolómica , Fitomejoramiento
17.
Med Leg J ; 87(3): 121-126, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31232645

RESUMEN

The Pliocene hominin fossil 'Lucy' (A.L. 288-1, Australopithecus afarensis) was discovered in the Afar region of Ethiopia in 1974 and dates to 3.18 million years in age. In Kappelman et al.,1 we presented the results of a detailed investigation of the skeleton that for the first time identified and described unusual bone-into-bone compressive fractures at several of the major long bone joints. Using multiple criteria, we concluded that these fractures are more likely to be perimortem than postmortem in nature. We next evaluated a number of possible mechanisms that could have produced these fractures and, on the basis of all of the evidence, hypothesised that a fall from considerable height, likely out of a tree, with its resulting vertical deceleration event, most closely matched the pattern of fractures preserved in the skeleton and was also the probable cause of death. Charlier et al. disagree with our approach and hypothesis, and instead present what they consider to be better evidence supporting two of the other possible mechanisms for breakage that we also investigated, a mudslide/flood, or an animal attack. We here show that the evidence presented by Charlier et al. is incorrectly interpreted, and that these two alternative hypotheses are less likely to be responsible for the fractures.


Asunto(s)
Accidentes por Caídas/mortalidad , Causas de Muerte , Deslizamientos de Tierra/mortalidad , Animales , Etiopía , Femenino , Antropología Forense/métodos , Fracturas Óseas/etiología , Fracturas Óseas/mortalidad , Hominidae/lesiones , Humanos
18.
Theor Appl Genet ; 132(9): 2689-2705, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31254024

RESUMEN

KEY MESSAGE: A high-resolution genetic map combined with haplotype analyses identified a wheat ortholog of rice gene APO1 as the best candidate gene for a 7AL locus affecting spikelet number per spike. A better understanding of the genes controlling differences in wheat grain yield components can accelerate the improvements required to satisfy future food demands. In this study, we identified a promising candidate gene underlying a quantitative trait locus (QTL) on wheat chromosome arm 7AL regulating spikelet number per spike (SNS). We used large heterogeneous inbred families ( > 10,000 plants) from two crosses to map the 7AL QTL to an 87-kb region (674,019,191-674,106,327 bp, RefSeq v1.0) containing two complete and two partial genes. In this region, we found three major haplotypes that were designated as H1, H2 and H3. The H2 haplotype contributed the high-SNS allele in both H1 × H2 and H2 × H3 segregating populations. The ancestral H3 haplotype is frequent in wild emmer (48%) but rare (~ 1%) in cultivated wheats. By contrast, the H1 and H2 haplotypes became predominant in modern cultivated durum and common wheat, respectively. Among the four candidate genes, only TraesCS7A02G481600 showed a non-synonymous polymorphism that differentiated H2 from the other two haplotypes. This gene, designated here as WHEAT ORTHOLOG OF APO1 (WAPO1), is an ortholog of the rice gene ABERRANT PANICLE ORGANIZATION 1 (APO1), which affects spikelet number. Taken together, the high-resolution genetic map, the association between polymorphisms in the different mapping populations with differences in SNS, and the known role of orthologous genes in other grass species suggest that WAPO-A1 is the most likely candidate gene for the 7AL SNS QTL among the four genes identified in the candidate gene region.


Asunto(s)
Mapeo Cromosómico/métodos , Cromosomas de las Plantas/genética , Marcadores Genéticos , Proteínas de Plantas/genética , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Triticum/crecimiento & desarrollo , Triticum/genética , Ligamiento Genético , Genotipo , Haplotipos , Fenotipo , Desarrollo de la Planta
19.
BMC Plant Biol ; 19(1): 112, 2019 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-30902042

RESUMEN

BACKGROUND: Mal de Río Cuarto virus (MRCV) infects several monocotyledonous species including maize and wheat. Infected plants show shortened internodes, partial sterility, increased tillering and reduced root length. To better understand the molecular basis of the plant-virus interactions leading to these symptoms, we combined RNA sequencing with metabolite and hormone measurements. RESULTS: More than 3000 differentially accumulated transcripts (DATs) were detected in MRCV-infected wheat plants at 21 days post inoculation compared to mock-inoculated plants. Infected plants exhibited decreased levels of TaSWEET13 transcripts, which are involved in sucrose phloem loading. Soluble sugars, starch, trehalose 6-phosphate (Tre6P), and organic and amino acids were all higher in MRCV-infected plants. In addition, several transcripts related to plant hormone metabolism, transport and signalling were increased upon MRCV infection. Transcripts coding for GA20ox, D14, MAX2 and SMAX1-like proteins involved in gibberellin biosynthesis and strigolactone signalling, were reduced. Transcripts involved in jasmonic acid, ethylene and brassinosteroid biosynthesis, perception and signalling and in auxin transport were also altered. Hormone measurements showed that jasmonic acid, brassinosteroids, abscisic acid and indole-3-acetic acid were significantly higher in infected leaves. CONCLUSIONS: Our results indicate that MRCV causes a profound hormonal imbalance that, together with alterations in sugar partitioning, could account for the symptoms observed in MRCV-infected plants.


Asunto(s)
Interacciones Huésped-Patógeno/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Reoviridae/patogenicidad , Azúcares/metabolismo , Triticum/virología , Brasinoesteroides/metabolismo , Citocininas/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Enfermedades de las Plantas/virología , Hojas de la Planta/metabolismo , Hojas de la Planta/virología , Triticum/genética , Triticum/metabolismo
20.
BMC Genomics ; 20(1): 52, 2019 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-30651071

RESUMEN

BACKGROUND: Insights into the genetic capacities of species to adapt to future climate change can be gained by using comparative genomic and transcriptomic data to reconstruct the genetic changes associated with such adaptations in the past. Here we investigate the genetic changes associated with adaptation to arid environments, specifically climatic extremes and new cactus hosts, through such an analysis of five repleta group Drosophila species. RESULTS: We find disproportionately high rates of gene gains in internal branches in the species' phylogeny where cactus use and subsequently cactus specialisation and high heat and desiccation tolerance evolved. The terminal branch leading to the most heat and desiccation resistant species, Drosophila aldrichi, also shows disproportionately high rates of both gene gains and positive selection. Several Gene Ontology terms related to metabolism were enriched in gene gain events in lineages where cactus use was evolving, while some regulatory and developmental genes were strongly selected in the Drosophila aldrichi branch. Transcriptomic analysis of flies subjected to sublethal heat shocks showed many more downregulation responses to the stress in a heat sensitive versus heat resistant species, confirming the existence of widespread regulatory as well as structural changes in the species' differing adaptations. Gene Ontology terms related to metabolism were enriched in the differentially expressed genes in the resistant species while terms related to stress response were over-represented in the sensitive one. CONCLUSION: Adaptations to new cactus hosts and hot desiccating environments were associated with periods of accelerated evolutionary change in diverse biochemistries. The hundreds of genes involved suggest adaptations of this sort would be difficult to achieve in the timeframes projected for anthropogenic climate change.


Asunto(s)
Adaptación Fisiológica/genética , Cactaceae/fisiología , Clima Desértico , Drosophila/genética , Drosophila/fisiología , Genoma de los Insectos , Animales , Análisis por Conglomerados , Lógica Difusa , Ontología de Genes , Genes de Insecto , Respuesta al Choque Térmico/genética , Anotación de Secuencia Molecular , Filogenia , Selección Genética , Estrés Fisiológico/genética , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...