Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Comput Biol Med ; 175: 108410, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38678938

RESUMEN

Latent diffusion models (LDMs) have emerged as a state-of-the-art image generation method, outperforming previous Generative Adversarial Networks (GANs) in terms of training stability and image quality. In computational pathology, generative models are valuable for data sharing and data augmentation. However, the impact of LDM-generated images on histopathology tasks compared to traditional GANs has not been systematically studied. We trained three LDMs and a styleGAN2 model on histology tiles from nine colorectal cancer (CRC) tissue classes. The LDMs include 1) a fine-tuned version of stable diffusion v1.4, 2) a Kullback-Leibler (KL)-autoencoder (KLF8-DM), and 3) a vector quantized (VQ)-autoencoder deploying LDM (VQF8-DM). We assessed image quality through expert ratings, dimensional reduction methods, distribution similarity measures, and their impact on training a multiclass tissue classifier. Additionally, we investigated image memorization in the KLF8-DM and styleGAN2 models. All models provided a high image quality, with the KLF8-DM achieving the best Frechet Inception Distance (FID) and expert rating scores for complex tissue classes. For simpler classes, the VQF8-DM and styleGAN2 models performed better. Image memorization was negligible for both styleGAN2 and KLF8-DM models. Classifiers trained on a mix of KLF8-DM generated and real images achieved a 4% improvement in overall classification accuracy, highlighting the usefulness of these images for dataset augmentation. Our systematic study of generative methods showed that KLF8-DM produces the highest quality images with negligible image memorization. The higher classifier performance in the generatively augmented dataset suggests that this augmentation technique can be employed to enhance histopathology classifiers for various tasks.


Asunto(s)
Neoplasias Colorrectales , Humanos , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos
2.
bioRxiv ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38585926

RESUMEN

Artificial intelligence models have been increasingly used in the analysis of tumor histology to perform tasks ranging from routine classification to identification of novel molecular features. These approaches distill cancer histologic images into high-level features which are used in predictions, but understanding the biologic meaning of such features remains challenging. We present and validate a custom generative adversarial network - HistoXGAN - capable of reconstructing representative histology using feature vectors produced by common feature extractors. We evaluate HistoXGAN across 29 cancer subtypes and demonstrate that reconstructed images retain information regarding tumor grade, histologic subtype, and gene expression patterns. We leverage HistoXGAN to illustrate the underlying histologic features for deep learning models for actionable mutations, identify model reliance on histologic batch effect in predictions, and demonstrate accurate reconstruction of tumor histology from radiographic imaging for a 'virtual biopsy'.

3.
Front Immunol ; 15: 1358019, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38515743

RESUMEN

Bladder cancer is an increasingly prevalent global disease that continues to cause morbidity and mortality despite recent advances in treatment. Immune checkpoint inhibitors (ICI) and fibroblast growth factor receptor (FGFR)-targeted therapeutics have had modest success in bladder cancer when used as monotherapy. Emerging data suggests that the combination of these two therapies could lead to improved clinical outcomes, but the optimal strategy for combining these agents remains uncertain. Mathematical models, specifically agent-based models (ABMs), have shown recent successes in uncovering the multiscale dynamics that shape the trajectory of cancer. They have enabled the optimization of treatment methods and the identification of novel therapeutic strategies. To assess the combined effects of anti-PD-1 and anti-FGFR3 small molecule inhibitors (SMI) on tumor growth and the immune response, we built an ABM that captures key facets of tumor heterogeneity and CD8+ T cell phenotypes, their spatial interactions, and their response to therapeutic pressures. Our model quantifies how tumor antigenicity and FGFR3 activating mutations impact disease trajectory and response to anti-PD-1 antibodies and anti-FGFR3 SMI. We find that even a small population of weakly antigenic tumor cells bearing an FGFR3 mutation can render the tumor resistant to combination therapy. However, highly antigenic tumors can overcome therapeutic resistance mediated by FGFR3 mutation. The optimal therapy depends on the strength of the FGFR3 signaling pathway. Under certain conditions, ICI alone is optimal; in others, ICI followed by anti-FGFR3 therapy is best. These results indicate the need to quantify FGFR3 signaling and the fitness advantage conferred on bladder cancer cells harboring this mutation. This ABM approach may enable rationally designed treatment plans to improve clinical outcomes.


Asunto(s)
Transducción de Señal , Neoplasias de la Vejiga Urinaria , Humanos , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/genética , Terapia Combinada , Mutación , Línea Celular Tumoral , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/metabolismo
4.
BMC Bioinformatics ; 25(1): 134, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38539070

RESUMEN

Deep learning methods have emerged as powerful tools for analyzing histopathological images, but current methods are often specialized for specific domains and software environments, and few open-source options exist for deploying models in an interactive interface. Experimenting with different deep learning approaches typically requires switching software libraries and reprocessing data, reducing the feasibility and practicality of experimenting with new architectures. We developed a flexible deep learning library for histopathology called Slideflow, a package which supports a broad array of deep learning methods for digital pathology and includes a fast whole-slide interface for deploying trained models. Slideflow includes unique tools for whole-slide image data processing, efficient stain normalization and augmentation, weakly-supervised whole-slide classification, uncertainty quantification, feature generation, feature space analysis, and explainability. Whole-slide image processing is highly optimized, enabling whole-slide tile extraction at 40x magnification in 2.5 s per slide. The framework-agnostic data processing pipeline enables rapid experimentation with new methods built with either Tensorflow or PyTorch, and the graphical user interface supports real-time visualization of slides, predictions, heatmaps, and feature space characteristics on a variety of hardware devices, including ARM-based devices such as the Raspberry Pi.


Asunto(s)
Aprendizaje Profundo , Programas Informáticos , Computadores , Procesamiento de Imagen Asistido por Computador/métodos
5.
Oral Oncol ; 149: 106688, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38219706

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) is a highly prevalent malignancy worldwide, with a significant proportion of patients developing recurrent and/or metastatic (R/M) disease. Despite recent advances in therapy, the prognosis for patients with advanced HNSCC remains poor. Here, we present the case of a patient with recurrent metastatic HNSCC harboring an HRAS G12S mutation who achieved a durable response to treatment with tipifarnib, a selective inhibitor of farnesyltransferase. The patient was a 48-year-old woman who had previously received multiple lines of therapy with no significant clinical response. However, treatment with tipifarnib resulted in a durable partial response that lasted 8 months. Serial genomic and transcriptomic analyses demonstrated upregulation of YAP1 and AXL in metastatic lesions compared with the primary tumor, the evolution of the tumor microenvironment from an immune-enriched to a fibrotic subtype with increased angiogenesis, and activation of the PI3K/AKT/mTOR pathway in tipifarnib treatment. Lastly, in HRAS-mutated PDXs and in the syngeneic HRAS model, we demonstrated that tipifarnib efficacy is limited by activation of the AKT pathway, and dual treatment with tipifarnib and the PI3K inhibitor, BYL719, resulted in enhanced anti-tumor efficacy. Our case study highlights the potential of targeting HRAS mutations with tipifarnib in R/M HNSCC and identifies potential mechanisms of acquired resistance to tipifarnib, along with immuno-, chemo-, and radiation therapy. Preclinical results provide a firm foundation for further investigation of drug combinations of HRAS-and PI3K -targeting therapeutics in R/M HRAS-driven HNSCC.


Asunto(s)
Neoplasias de Cabeza y Cuello , Proteínas Proto-Oncogénicas c-akt , Quinolonas , Femenino , Humanos , Persona de Mediana Edad , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Recurrencia Local de Neoplasia/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/genética , Línea Celular Tumoral , Microambiente Tumoral , Proteínas Proto-Oncogénicas p21(ras)/genética
6.
Cancer ; 130(8): 1210-1220, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38146744

RESUMEN

BACKGROUND: Guidelines recommend the use of genomic assays such as OncotypeDx to aid in decisions regarding the use of chemotherapy for hormone receptor-positive, HER2-negative (HR+/HER2-) breast cancer. The RSClin prognostic tool integrates OncotypeDx and clinicopathologic features to predict distant recurrence and chemotherapy benefit, but further validation is needed before broad clinical adoption. METHODS: This study included patients from the National Cancer Data Base (NCDB) who were diagnosed with stage I-III HR+/HER2- breast cancer from 2010 to 2020 and received adjuvant endocrine therapy with or without chemotherapy. RSClin-predicted chemotherapy benefit was stratified into low (<3% reduction in distant recurrence), intermediate (3%-5%), and high (>5%). Cox models were used to model mortality adjusted for age, comorbidity index, insurance, and race/ethnicity. RESULTS: A total of 285,441 patients were identified for inclusion from the NCDB, with an average age of 60 years and a median follow-up of 58 months. Chemotherapy was associated with improved overall survival only for those predicted to have intermediate (adjusted hazard ratio [aHR], 0.68; 95% confidence interval [CI], 0.60-0.79) and high benefit per RSClin (aHR, 0.66; 95% CI, 0.61-0.72). Consistent benefit was seen in the subset with a low OncotypeDx score (<26) and intermediate (aHR, 0.66; 95% CI, 0.53-0.82) or high (aHR, 0.71; 95% CI, 0.58-0.86) RSClin-predicted benefit. No survival benefit with chemotherapy was seen in patients with a high OncotypeDx score (≥26) and low benefit per RSClin (aHR, 1.70; 95% CI, 0.41-6.99). CONCLUSIONS: RSClin may identify high-risk patients who benefit from treatment intensification more accurately than OncotypeDx, and further prospective study is needed.


Asunto(s)
Neoplasias de la Mama , Receptor ErbB-2 , Humanos , Persona de Mediana Edad , Femenino , Receptor ErbB-2/genética , Quimioterapia Adyuvante , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Pronóstico , Terapia Combinada , Recurrencia Local de Neoplasia/patología
7.
Radiol Artif Intell ; 5(6): e220299, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38074785

RESUMEN

Purpose: To externally evaluate a mammography-based deep learning (DL) model (Mirai) in a high-risk racially diverse population and compare its performance with other mammographic measures. Materials and Methods: A total of 6435 screening mammograms in 2096 female patients (median age, 56.4 years ± 11.2 [SD]) enrolled in a hospital-based case-control study from 2006 to 2020 were retrospectively evaluated. Pathologically confirmed breast cancer was the primary outcome. Mirai scores were the primary predictors. Breast density and Breast Imaging Reporting and Data System (BI-RADS) assessment categories were comparative predictors. Performance was evaluated using area under the receiver operating characteristic curve (AUC) and concordance index analyses. Results: Mirai achieved 1- and 5-year AUCs of 0.71 (95% CI: 0.68, 0.74) and 0.65 (95% CI: 0.64, 0.67), respectively. One-year AUCs for nondense versus dense breasts were 0.72 versus 0.58 (P = .10). There was no evidence of a difference in near-term discrimination performance between BI-RADS and Mirai (1-year AUC, 0.73 vs 0.68; P = .34). For longer-term prediction (2-5 years), Mirai outperformed BI-RADS assessment (5-year AUC, 0.63 vs 0.54; P < .001). Using only images of the unaffected breast reduced the discriminatory performance of the DL model (P < .001 at all time points), suggesting that its predictions are likely dependent on the detection of ipsilateral premalignant patterns. Conclusion: A mammography DL model showed good performance in a high-risk external dataset enriched for African American patients, benign breast disease, and BRCA mutation carriers, and study findings suggest that the model performance is likely driven by the detection of precancerous changes.Keywords: Breast, Cancer, Computer Applications, Convolutional Neural Network, Deep Learning Algorithms, Informatics, Epidemiology, Machine Learning, Mammography, Oncology, Radiomics Supplemental material is available for this article. © RSNA, 2023See also commentary by Kontos and Kalpathy-Cramer in this issue.

8.
Sci Rep ; 13(1): 22541, 2023 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-38110479

RESUMEN

Immunotherapy has dramatically transformed the cancer treatment landscape largely due to the efficacy of immune checkpoint inhibitors (ICIs). Although ICIs have shown promising results for many patients, the low response rates in many cancers highlight the ongoing challenges in cancer treatment. Cytotoxic T lymphocytes (CTLs) execute their cell-killing function via two distinct mechanisms: a fast-acting, perforin-mediated process and a slower, Fas ligand (FasL)-driven pathway. Evidence also suggests that the preferred killing mechanism of CTLs depends on the antigenicity of tumor cells. To determine the critical factors affecting responses to ICIs, we construct an ordinary differential equation model describing in vivo tumor-immune dynamics in the presence of active or blocked PD-1/PD-L1 immune checkpoint. Specifically, we identify important aspects of the tumor-immune landscape that affect tumor size and composition in the short and long term. We also generate a virtual cohort of mice with diverse tumor and immune attributes to simulate the outcomes of immune checkpoint blockade in a heterogeneous population. By identifying key tumor and immune characteristics associated with tumor elimination, dormancy, and escape, we predict which fraction of a population potentially responds well to ICIs and ways to enhance therapeutic outcomes with combination therapy.


Asunto(s)
Neoplasias , Linfocitos T Citotóxicos , Humanos , Animales , Ratones , Neoplasias/tratamiento farmacológico , Inmunoterapia/métodos , Perforina , Modelos Teóricos
9.
J Oral Pathol Med ; 52(10): 980-987, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37712321

RESUMEN

BACKGROUND: Dysplasia grading systems for oral epithelial dysplasia are a source of disagreement among pathologists. Therefore, machine learning approaches are being developed to mitigate this issue. METHODS: This cross-sectional study included a cohort of 82 patients with oral potentially malignant disorders and correspondent 98 hematoxylin and eosin-stained whole slide images with biopsied-proven dysplasia. All whole-slide images were manually annotated based on the binary system for oral epithelial dysplasia. The annotated regions of interest were segmented and fragmented into small patches and non-randomly sampled into training/validation and test subsets. The training/validation data were color augmented, resulting in a total of 81,786 patches for training. The held-out independent test set enrolled a total of 4,486 patches. Seven state-of-the-art convolutional neural networks were trained, validated, and tested with the same dataset. RESULTS: The models presented a high learning rate, yet very low generalization potential. At the model development, VGG16 performed the best, but with massive overfitting. In the test set, VGG16 presented the best accuracy, sensitivity, specificity, and area under the curve (62%, 62%, 66%, and 65%, respectively), associated with the higher loss among all Convolutional Neural Networks (CNNs) tested. EfficientB0 has comparable metrics and the lowest loss among all convolutional neural networks, being a great candidate for further studies. CONCLUSION: The models were not able to generalize enough to be applied in real-life datasets due to an overlapping of features between the two classes (i.e., high risk and low risk of malignization).


Asunto(s)
Aprendizaje Profundo , Humanos , Estudios Transversales , Redes Neurales de la Computación , Aprendizaje Automático , Biopsia
10.
Gastric Cancer ; 26(5): 708-720, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37269416

RESUMEN

INTRODUCTION: The Laurén classification is widely used for Gastric Cancer (GC) histology subtyping. However, this classification is prone to interobserver variability and its prognostic value remains controversial. Deep Learning (DL)-based assessment of hematoxylin and eosin (H&E) stained slides is a potentially useful tool to provide an additional layer of clinically relevant information, but has not been systematically assessed in GC. OBJECTIVE: We aimed to train, test and externally validate a deep learning-based classifier for GC histology subtyping using routine H&E stained tissue sections from gastric adenocarcinomas and to assess its potential prognostic utility. METHODS: We trained a binary classifier on intestinal and diffuse type GC whole slide images for a subset of the TCGA cohort (N = 166) using attention-based multiple instance learning. The ground truth of 166 GC was obtained by two expert pathologists. We deployed the model on two external GC patient cohorts, one from Europe (N = 322) and one from Japan (N = 243). We assessed classification performance using the Area Under the Receiver Operating Characteristic Curve (AUROC) and prognostic value (overall, cancer specific and disease free survival) of the DL-based classifier with uni- and multivariate Cox proportional hazard models and Kaplan-Meier curves with log-rank test statistics. RESULTS: Internal validation using the TCGA GC cohort using five-fold cross-validation achieved a mean AUROC of 0.93 ± 0.07. External validation showed that the DL-based classifier can better stratify GC patients' 5-year survival compared to pathologist-based Laurén classification for all survival endpoints, despite frequently divergent model-pathologist classifications. Univariate overall survival Hazard Ratios (HRs) of pathologist-based Laurén classification (diffuse type versus intestinal type) were 1.14 (95% Confidence Interval (CI) 0.66-1.44, p-value = 0.51) and 1.23 (95% CI 0.96-1.43, p-value = 0.09) in the Japanese and European cohorts, respectively. DL-based histology classification resulted in HR of 1.46 (95% CI 1.18-1.65, p-value < 0.005) and 1.41 (95% CI 1.20-1.57, p-value < 0.005), in the Japanese and European cohorts, respectively. In diffuse type GC (as defined by the pathologist), classifying patients using the DL diffuse and intestinal classifications provided a superior survival stratification, and demonstrated statistically significant survival stratification when combined with pathologist classification for both the Asian (overall survival log-rank test p-value < 0.005, HR 1.43 (95% CI 1.05-1.66, p-value = 0.03) and European cohorts (overall survival log-rank test p-value < 0.005, HR 1.56 (95% CI 1.16-1.76, p-value < 0.005)). CONCLUSION: Our study shows that gastric adenocarcinoma subtyping using pathologist's Laurén classification as ground truth can be performed using current state of the art DL techniques. Patient survival stratification seems to be better by DL-based histology typing compared with expert pathologist histology typing. DL-based GC histology typing has potential as an aid in subtyping. Further investigations are warranted to fully understand the underlying biological mechanisms for the improved survival stratification despite apparent imperfect classification by the DL algorithm.


Asunto(s)
Adenocarcinoma , Aprendizaje Profundo , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patología , Estudios Retrospectivos , Pronóstico , Modelos de Riesgos Proporcionales , Adenocarcinoma/patología
11.
NPJ Precis Oncol ; 7(1): 49, 2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37248379

RESUMEN

Artificial intelligence methods including deep neural networks (DNN) can provide rapid molecular classification of tumors from routine histology with accuracy that matches or exceeds human pathologists. Discerning how neural networks make their predictions remains a significant challenge, but explainability tools help provide insights into what models have learned when corresponding histologic features are poorly defined. Here, we present a method for improving explainability of DNN models using synthetic histology generated by a conditional generative adversarial network (cGAN). We show that cGANs generate high-quality synthetic histology images that can be leveraged for explaining DNN models trained to classify molecularly-subtyped tumors, exposing histologic features associated with molecular state. Fine-tuning synthetic histology through class and layer blending illustrates nuanced morphologic differences between tumor subtypes. Finally, we demonstrate the use of synthetic histology for augmenting pathologist-in-training education, showing that these intuitive visualizations can reinforce and improve understanding of histologic manifestations of tumor biology.

12.
Am Soc Clin Oncol Educ Book ; 43: e390084, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37235822

RESUMEN

Recently, a wide spectrum of artificial intelligence (AI)-based applications in the broader categories of digital pathology, biomarker development, and treatment have been explored. In the domain of digital pathology, these have included novel analytical strategies for realizing new information derived from standard histology to guide treatment selection and biomarker development to predict treatment selection and response. In therapeutics, these have included AI-driven drug target discovery, drug design and repurposing, combination regimen optimization, modulated dosing, and beyond. Given the continued advances that are emerging, it is important to develop workflows that seamlessly combine the various segments of AI innovation to comprehensively augment the diagnostic and interventional arsenal of the clinical oncology community. To overcome challenges that remain with regard to the ideation, validation, and deployment of AI in clinical oncology, recommendations toward bringing this workflow to fruition are also provided from clinical, engineering, implementation, and health care economics considerations. Ultimately, this work proposes frameworks that can potentially integrate these domains toward the sustainable adoption of practice-changing AI by the clinical oncology community to drive improved patient outcomes.


Asunto(s)
Inteligencia Artificial , Diseño de Fármacos , Humanos , Descubrimiento de Drogas , Oncología Médica
13.
NPJ Breast Cancer ; 9(1): 25, 2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37059742

RESUMEN

Gene expression-based recurrence assays are strongly recommended to guide the use of chemotherapy in hormone receptor-positive, HER2-negative breast cancer, but such testing is expensive, can contribute to delays in care, and may not be available in low-resource settings. Here, we describe the training and independent validation of a deep learning model that predicts recurrence assay result and risk of recurrence using both digital histology and clinical risk factors. We demonstrate that this approach outperforms an established clinical nomogram (area under the receiver operating characteristic curve of 0.83 versus 0.76 in an external validation cohort, p = 0.0005) and can identify a subset of patients with excellent prognoses who may not need further genomic testing.

14.
NPJ Digit Med ; 6(1): 75, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37100871

RESUMEN

Large language models such as ChatGPT can produce increasingly realistic text, with unknown information on the accuracy and integrity of using these models in scientific writing. We gathered fifth research abstracts from five high-impact factor medical journals and asked ChatGPT to generate research abstracts based on their titles and journals. Most generated abstracts were detected using an AI output detector, 'GPT-2 Output Detector', with % 'fake' scores (higher meaning more likely to be generated) of median [interquartile range] of 99.98% 'fake' [12.73%, 99.98%] compared with median 0.02% [IQR 0.02%, 0.09%] for the original abstracts. The AUROC of the AI output detector was 0.94. Generated abstracts scored lower than original abstracts when run through a plagiarism detector website and iThenticate (higher scores meaning more matching text found). When given a mixture of original and general abstracts, blinded human reviewers correctly identified 68% of generated abstracts as being generated by ChatGPT, but incorrectly identified 14% of original abstracts as being generated. Reviewers indicated that it was surprisingly difficult to differentiate between the two, though abstracts they suspected were generated were vaguer and more formulaic. ChatGPT writes believable scientific abstracts, though with completely generated data. Depending on publisher-specific guidelines, AI output detectors may serve as an editorial tool to help maintain scientific standards. The boundaries of ethical and acceptable use of large language models to help scientific writing are still being discussed, and different journals and conferences are adopting varying policies.

15.
Artículo en Inglés | MEDLINE | ID: mdl-37037738

RESUMEN

OBJECTIVE: The present study aims to quantify clinicians' perceptions of oral potentially malignant disorders (OPMDs) when evaluating, classifying, and manually annotating clinical images, as well as to understand the source of inter-observer variability when assessing these lesions. The hypothesis was that different interpretations could affect the quality of the annotations used to train a Supervised Learning model. STUDY DESIGN: Forty-six clinical images from 37 patients were reviewed, classified, and manually annotated at the pixel level by 3 labelers. We compared the inter-examiner assessment based on clinical criteria through the κ statistics (Fleiss's kappa). The segmentations were also compared using the mean pixel-wise intersection over union (IoU). RESULTS: The inter-observer agreement for homogeneous/non-homogeneous criteria was substantial (κ = 63, 95% CI: 0.47-0.80). For the subclassification of non-homogeneous lesions, the inter-observer agreement was moderate (κ = 43, 95% CI: 0.34-0.53) (P < .001). The mean IoU of 0.53 (±0.22) was considered low. CONCLUSION: The subjective clinical assessment (based on human visual observation, variable criteria that have suffered adjustments over the years, different educational backgrounds, and personal experience) may explain the source of inter-observer discordance for the classification and annotation of OPMD. Therefore, there is a strong probability of transferring the subjectivity of human analysis to artificial intelligence models. The use of large data sets and segmentation based on the union of all labelers' annotations holds the potential to overcome this limitation.


Asunto(s)
Inteligencia Artificial , Lesiones Precancerosas , Humanos , Curaduría de Datos , Variaciones Dependientes del Observador , Aprendizaje Automático Supervisado , Percepción
16.
J Cancer Educ ; 38(5): 1501-1508, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37058222

RESUMEN

With cancer incidence increasing worldwide, physicians with cancer research training are needed. The Scholars in Oncology-Associated Research (SOAR) cancer research education program was developed to train medical students in cancer research while exposing them to the breadth of clinical oncology. Due to the COVID-19 pandemic, SOAR transitioned from in-person in 2019 to virtual in 2020 and hybrid in 2021. This study investigates positive and negative aspects of the varying educational formats. A mixed-methods approach was used to evaluate the educational formats. Pre- and post-surveys were collected from participants to assess their understanding of cancer as a clinical and research discipline. Structured interviews were conducted across all three cohorts, and thematic analysis was used to generate themes. A total of 37 students participated in SOAR and completed surveys (2019 n = 11, 2020 n = 14, and 2021 n = 12), and 18 interviews were conducted. Understanding of oncology as a clinical (p < 0.01 for all) and research discipline (p < 0.01 for all) improved within all three cohorts. There was no difference between each cohort's improvement in research understanding (p = 0.6). There was no difference between each cohort's understanding of oncology-related disciplines as both clinical and research disciplines (p > 0.1 for all). Thematic analysis demonstrated that hybrid and in-person formats were favored over a completely virtual one. Our findings demonstrate that a medical student cancer research education program is effective using in-person or hybrid formats for research education, although virtual experiences may be suboptimal to learning about clinical oncology.


Asunto(s)
COVID-19 , Neoplasias , Estudiantes de Medicina , Humanos , COVID-19/epidemiología , Facultades de Medicina , Pandemias , Aprendizaje , Neoplasias/prevención & control
17.
Front Med (Lausanne) ; 10: 1058919, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36960342

RESUMEN

Patient-derived xenografts (PDXs) are an appealing platform for preclinical drug studies. A primary challenge in modeling drug response prediction (DRP) with PDXs and neural networks (NNs) is the limited number of drug response samples. We investigate multimodal neural network (MM-Net) and data augmentation for DRP in PDXs. The MM-Net learns to predict response using drug descriptors, gene expressions (GE), and histology whole-slide images (WSIs). We explore whether combining WSIs with GE improves predictions as compared with models that use GE alone. We propose two data augmentation methods which allow us training multimodal and unimodal NNs without changing architectures with a single larger dataset: 1) combine single-drug and drug-pair treatments by homogenizing drug representations, and 2) augment drug-pairs which doubles the sample size of all drug-pair samples. Unimodal NNs which use GE are compared to assess the contribution of data augmentation. The NN that uses the original and the augmented drug-pair treatments as well as single-drug treatments outperforms NNs that ignore either the augmented drug-pairs or the single-drug treatments. In assessing the multimodal learning based on the MCC metric, MM-Net outperforms all the baselines. Our results show that data augmentation and integration of histology images with GE can improve prediction performance of drug response in PDXs.

18.
NPJ Precis Oncol ; 7(1): 35, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36977919

RESUMEN

The histopathological phenotype of tumors reflects the underlying genetic makeup. Deep learning can predict genetic alterations from pathology slides, but it is unclear how well these predictions generalize to external datasets. We performed a systematic study on Deep-Learning-based prediction of genetic alterations from histology, using two large datasets of multiple tumor types. We show that an analysis pipeline that integrates self-supervised feature extraction and attention-based multiple instance learning achieves a robust predictability and generalizability.

19.
J Oral Pathol Med ; 52(3): 197-205, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36792771

RESUMEN

Oral potentially malignant disorders represent precursor lesions that may undergo malignant transformation to oral cancer. There are many known risk factors associated with the development of oral potentially malignant disorders, and contribute to the risk of malignant transformation. Although many advances have been reported to understand the biological behavior of oral potentially malignant disorders, their clinical features that indicate the characteristics of malignant transformation are not well established. Early diagnosis of malignancy is the most important factor to improve patients' prognosis. The integration of machine learning into routine diagnosis has recently emerged as an adjunct to aid clinical examination. Increased performances of artificial intelligence AI-assisted medical devices are claimed to exceed the human capability in the clinical detection of early cancer. Therefore, the aim of this narrative review is to introduce artificial intelligence terminology, concepts, and models currently used in oncology to familiarize oral medicine scientists with the language skills, best research practices, and knowledge for developing machine learning models applied to the clinical detection of oral potentially malignant disorders.


Asunto(s)
Enfermedades de la Boca , Neoplasias de la Boca , Lesiones Precancerosas , Humanos , Inteligencia Artificial , Aprendizaje Automático , Lesiones Precancerosas/diagnóstico , Lesiones Precancerosas/patología , Neoplasias de la Boca/diagnóstico
20.
Surg Pathol Clin ; 16(1): 167-176, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36739164

RESUMEN

Machine learning methods have been growing in prominence across all areas of medicine. In pathology, recent advances in deep learning (DL) have enabled computational analysis of histological samples, aiding in diagnosis and characterization in multiple disease areas. In cancer, and particularly endocrine cancer, DL approaches have been shown to be useful in tasks ranging from tumor grading to gene expression prediction. This review summarizes the current state of DL research in endocrine cancer histopathology with an emphasis on experimental design, significant findings, and key limitations.


Asunto(s)
Aprendizaje Profundo , Neoplasias de las Glándulas Endocrinas , Medicina , Neoplasias , Humanos , Aprendizaje Automático , Neoplasias de las Glándulas Endocrinas/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...