Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Pharmacol Exp Ther ; 388(2): 358-366, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-37652711

RESUMEN

Reactive oxygen species have an emerging role in the pathologic consequences of status epilepticus. We have previously demonstrated the efficacy of a water-for-injection formulation of the meso-porphyrin catalytic antioxidant, manganese (III) meso-tetrakis (N-N-diethylimidazole) porphyrin (AEOL10150) against oxidative stress, neuroinflammation, and neuronal death initiated by kainic acid, pilocarpine, diisopropylflurophosphate (DFP), and soman. This previous dose and dosing strategy of AEOL10150 required smaller multiple daily injections, precluding our ability to test its efficacy against delayed consequences of nerve agent exposure such as neurodegeneration and cognitive dysfunction. Therefore, we developed formulations of AEOL10150 designed to deliver a larger dose once daily with improved brain pharmacodynamics. We examined four new formulations of AEOL10150 that resulted in 8 times higher subcutaneous dose with lower acute toxicity, slower absorption, longer half-life, and higher maximal plasma concentrations compared with our previous strategy. AEOL10150 brain levels exhibited improved pharmacodynamics over 24 hours with all four formulations. We tested a subcutaneous dose of 40 mg/kg AEOL10150 in two formulations (2% carboxymethyl cellulose and 4% polyethylene glycol-4000) in the DFP rat model, and both formulations exhibited significant protection against DFP-induced oxidative stress. Additionally, and in one formulation (4% polyethylene glycol-4000), AEOL10150 significantly protected against DFP-induced neuronal death, microglial activation, delayed memory impairment, and mortality. These results suggest that reformulation of AEOL10150 can attenuate acute and delayed outcomes of organophosphate neurotoxicity. SIGNIFICANCE STATEMENT: Reformulation of manganese (III) meso-tetrakis (N-N-diethylimidazole) porphyrin allowed higher tolerated doses of the compound with improved pharmacodynamics. Specifically, one new formulation allowed fewer daily doses and improvement in acute and delayed outcomes of organophosphate toxicity.


Asunto(s)
Disfunción Cognitiva , Metaloporfirinas , Agentes Nerviosos , Ratas , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Ratas Sprague-Dawley , Agentes Nerviosos/toxicidad , Enfermedades Neuroinflamatorias , Manganeso , Estrés Oxidativo , Metaloporfirinas/farmacología , Metaloporfirinas/uso terapéutico , Organofosfatos , Polietilenglicoles
2.
J Neurosci ; 43(10): 1845-1857, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36759193

RESUMEN

Mitochondrial dysfunction is an early event in the pathogenesis of neurologic disorders and aging. Sirtuin 3 (SIRT3) regulates mitochondrial function in response to the cellular environment through the reversible deacetylation of proteins involved in metabolism and reactive oxygen species detoxification. As the primary mitochondrial deacetylase, germline, or peripheral tissue-specific deletion of SIRT3 produces mitochondrial hyperacetylation and the accelerated development of age-related diseases. Given the unique metabolic demands of neurons, the role of SIRT3 in the brain is only beginning to emerge. Using mass spectrometry-based acetylomics, high-resolution respirometry, video-EEG, and cognition testing, we report targeted deletion of SIRT3 from select neurons in the cortex and hippocampus produces altered neuronal excitability and metabolic dysfunction in female mice. Targeted deletion of SIRT3 from neuronal helix-loop-helix 1 (NEX)-expressing neurons resulted in mitochondrial hyperacetylation, female-specific superoxide dismutase-2 (SOD2) modification, increased steady-state superoxide levels, metabolic reprogramming, altered neuronal excitability, and working spatial memory deficits. Inducible neuronal deletion of SIRT3 likewise produced female-specific deficits in spatial working memory. Together, the data demonstrate that deletion of SIRT3 from forebrain neurons selectively predisposes female mice to deficits in mitochondrial and cognitive function.SIGNIFICANCE STATEMENT Mitochondrial SIRT3 is an enzyme shown to regulate energy metabolism and antioxidant function, by direct deacetylation of proteins. In this study, we show that neuronal SIRT3 deficiency renders female mice selectively vulnerable to impairment in redox and metabolic function, spatial memory, and neuronal excitability. The observed sex-specific effects on cognition and neuronal excitability in female SIRT3-deficient mice suggest that mitochondrial dysfunction may be one factor underlying comorbid neuronal diseases, such as Alzheimer's disease and epilepsy. Furthermore, the data suggest that SIRT3 dysfunction may predispose females to age-related metabolic and cognitive impairment.


Asunto(s)
Sirtuina 3 , Masculino , Ratones , Femenino , Animales , Sirtuina 3/genética , Neuronas/metabolismo , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Envejecimiento/metabolismo , Acetilación
3.
Neurobiol Dis ; 158: 105470, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34371143

RESUMEN

Mitochondrial superoxide (O2-) production is implicated in aging, neurodegenerative disease, and most recently epilepsy. Yet the specific contribution of neuronal O2- to these phenomena is unclear. Here, we selectively deleted superoxide dismutase-2 (SOD2) in neuronal basic helix-loop-helix transcription factor (NEX)-expressing cells restricting deletion to a subset of excitatory principle neurons primarily in the forebrain (cortex and hippocampus). This resulted in nSOD2 KO mice that lived into adulthood (2-3 months) with epilepsy, selective loss of neurons, metabolic rewiring and a marked mitohormetic gene response. Surprisingly, expression of an astrocytic gene, glial fibrillary acidic protein (GFAP) was significantly increased relative to WT. Further studies in rat primary neuron-glial cultures showed that increased mitochondrial O2-, specifically in neurons, was sufficient to upregulate GFAP. These results suggest that neuron-specific mitochondrial O2- is sufficient to drive a complex and catastrophic epileptic phenotype and highlights the ability of SOD2 to act in a cell-nonautonomous manner to influence an astrocytic response.


Asunto(s)
Astrocitos/patología , Epilepsia/patología , Trastornos del Metabolismo de la Glucosa/patología , Mitocondrias , Neuronas , Estrés Oxidativo , Animales , Conducta Animal , Electroencefalografía , Epilepsia/psicología , Proteína Ácida Fibrilar de la Glía/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora , Cultivo Primario de Células , Ratas , Superóxido Dismutasa/genética , Superóxidos/metabolismo
4.
Neurobiol Dis ; 133: 104457, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31028872

RESUMEN

The use of chemical warfare agents is an ongoing, significant threat to both civilians and military personnel worldwide. Nerve agents are by far the most formidable toxicants in terms of their lethality and toxicity. Nerve agents initiate neurotoxicity by the irreversible inhibition of acetylcholinesterase and resultant accumulation of acetylcholine in excitable tissues. The cholinergic toxidrome presents as miosis, lacrimation, diarrhea, fasciculations, seizures, respiratory arrest and coma. Current medical countermeasures can attenuate acute mortality and confer limited protection against secondary neuronal injury when given rapidly after exposure. However, there is an urgent need for the development of novel, add-on neuroprotective therapies to prevent mortality and long-term toxicity of nerve agents. Increasing evidence suggests that pathways other than direct acetylcholinesterase inhibition contribute to neurotoxicity and secondary neuronal injury. Among these, oxidative stress is emerging as a key therapeutic target for nerve agent toxicity. In this review, we discuss the rationale for targeting oxidative stress in nerve agent toxicity and highlight research investigating antioxidant therapy as a neuroprotective medical countermeasure to attenuate oxidative stress, neuroinflammation and neurodegeneration.


Asunto(s)
Antioxidantes/farmacología , Agentes Nerviosos/toxicidad , Fármacos Neuroprotectores/farmacología , Síndromes de Neurotoxicidad/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Animales , Humanos
5.
Redox Biol ; 20: 275-284, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30384261

RESUMEN

Persistent inhibition of acetylcholinesterase resulting from exposure to nerve agents such as soman, is associated with prolonged seizure activity known as status epilepticus (SE). Without medical countermeasures, exposure to soman and resultant SE leads to high morbidity and mortality. Currently available therapeutics are effective in limiting mortality, however effects on morbidity are highly time-dependent and rely on the ability to suppress SE. We have previously demonstrated significant protection from secondary neuronal injury in surrogate nerve agent models by targeting oxidative stress. However, whether oxidative stress represents a relevant therapeutic target in genuine nerve agent toxicity is unknown. Here, we demonstrate that soman exposure results in robust region- and time-dependent oxidative stress. Targeting this oxidative stress in a post-exposure paradigm using a small molecular weight, broad spectrum catalytic antioxidant, was sufficient to attenuate brain and plasma oxidative stress, neuroinflammation and neurodegeneration. Thus, targeting of oxidative stress in a post-exposure paradigm can mitigate secondary neuronal injury following soman exposure.


Asunto(s)
Antioxidantes/farmacología , Agentes Nerviosos/toxicidad , Fármacos Neuroprotectores/farmacología , Animales , Biomarcadores , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Citocinas/sangre , Citocinas/metabolismo , Mediadores de Inflamación/sangre , Mediadores de Inflamación/metabolismo , Masculino , Microglía/efectos de los fármacos , Microglía/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas , Especies de Nitrógeno Reactivo/sangre , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/sangre , Especies Reactivas de Oxígeno/metabolismo , Soman/farmacología
6.
Toxicol Sci ; 162(2): 611-621, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29272548

RESUMEN

Prolonged seizure activity or status epilepticus (SE) is one of the most critical manifestations of organophosphate exposure. Previous studies in our laboratory have demonstrated that oxidative stress is a critical mediator of SE-induced neuronal injury. The goal of this study was to determine if diisopropylflurorphoshate (DFP) exposure in rats resulted in oxidative stress and whether scavenging reactive oxygen species attenuated DFP-induced neurotoxicity. DFP treatment increased indices of oxidative stress in a time- and region- dependent manner. Neuronal loss measured by Fluoro-Jade B staining was significantly increased in the hippocampus, piriform cortex and amygdala following DFP. Similarly, levels of the proinflammatory cytokines, particularly TNF-α, IL-6, and KC/GRO were significantly increased in the piriform cortex and in the hippocampus following DFP treatment. The catalytic antioxidant AEOL10150, when treatment was initiated 5 min after DFP-induced SE, significantly attenuated indices of oxidative stress, neuroinflammation and neuronal damage. This study suggests that catalytic antioxidant treatment may be useful as a novel therapy to attenuate secondary neuronal injury following organophosphate exposure.


Asunto(s)
Antioxidantes/uso terapéutico , Isoflurofato/toxicidad , Metaloporfirinas/uso terapéutico , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Síndromes de Neurotoxicidad/prevención & control , Estrés Oxidativo/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Masculino , Neuronas/metabolismo , Neuronas/patología , Síndromes de Neurotoxicidad/metabolismo , Síndromes de Neurotoxicidad/patología , Ratas Sprague-Dawley
7.
Int J Mol Sci ; 18(11)2017 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-29117123

RESUMEN

The epilepsies are a heterogeneous group of disorders characterized by the propensity to experience spontaneous recurrent seizures. Epilepsies can be genetic or acquired, and the underlying mechanisms of seizure initiation, seizure propagation, and comorbid conditions are incompletely understood. Metabolic changes including the production of reactive species are known to result from prolonged seizures and may also contribute to epilepsy development. In this review, we focus on the evidence that metabolic and redox disruption is both cause and consequence of epileptic seizures. Additionally, we discuss the promise of targeting redox processes as a therapeutic option in epilepsy.


Asunto(s)
Epilepsia/tratamiento farmacológico , Estrés Oxidativo , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Epilepsia/metabolismo , Humanos , Ratones , Mitocondrias/metabolismo , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Ratas
8.
Neurochem Res ; 42(7): 2024-2032, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28462450

RESUMEN

Status epilepticus is a common manifestation of nerve agent toxicity and represents a serious medical emergency with high rates of mortality and neurologic injury in those that survive. The aim of the current study was to determine if targeting oxidative stress with the catalytic antioxidant, AEOL10150, would reduce pilocarpine-induced mortality and attenuate neuronal death and neuroinflammation. We found that treatment with AEOL10150 in conjunction with scopolamine and diazepam following pilocarpine-induced SE was able to significantly reduce mortality compared to treatment with just scopolamine and diazepam. Mortality was further reduced when AEOL10150 was used in conjunction with atropine and diazepam which is considered the standard of care for nerve agent exposures. Both treatment paradigms offered significant protection against SE-induced oxidative stress. Additionally, treatment with scopolamine, AEOL10150 and diazepam attenuated SE-induced neuronal loss and neuroinflammation. Taken together, the data suggest that pharmacological targeting of oxidative stress can improve survival and attenuate secondary neurological damage following SE induced by the nerve agent surrogate pilocarpine.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Antioxidantes/uso terapéutico , Hipocampo/metabolismo , Estrés Oxidativo/fisiología , Estado Epiléptico/metabolismo , Estado Epiléptico/mortalidad , Animales , Anticonvulsivantes/farmacología , Antioxidantes/farmacología , Hipocampo/efectos de los fármacos , Masculino , Estrés Oxidativo/efectos de los fármacos , Pilocarpina/toxicidad , Ratas , Ratas Sprague-Dawley , Estado Epiléptico/tratamiento farmacológico
9.
Toxicol Appl Pharmacol ; 326: 34-42, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28400118

RESUMEN

Reactive oxygen species are a well-defined therapeutic target for Parkinson's disease (PD) and pharmacological agents that catalytically scavenge reactive species are promising neuroprotective strategies for treatment. Metalloporphyrins are synthetic catalytic antioxidants that mimic the body's own antioxidant enzymes i.e. superoxide dismutases and catalase. The goal of this study was to determine if newly designed metalloporphyrins have enhanced pharmacodynamics including oral bioavailability, longer plasma elimination half-lives, penetrate the blood brain barrier, and show promise for PD treatment. Three metalloporphyrins (AEOL 11216, AEOL 11203 and AEOL 11114) were identified in this study as potential candidates for further pre-clinical development. Each of these compounds demonstrated blood brain barrier permeability by the i.p. route and two of three compounds (AEOL 11203 and AEOL 11114) were orally bioavailable. All of these compounds protected against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity, including dopamine depletion in the striatum, dopaminergic neuronal loss in the substantial nigra, and increased oxidative/nitrative stress indices (glutathione disulfide and 3-nitrotyrosine) in the ventral midbrain of the mice without inhibiting MPTP metabolism. Daily therapeutic dosing of these metalloporphyrins were well tolerated without accumulation of brain manganese levels or behavioral alterations assessed by open field and rotarod tests. The study identified two orally active metalloporphyrins and one injectable metalloporphyrin as clinical candidates for further development in PD.


Asunto(s)
Antioxidantes/farmacología , Antiparkinsonianos/farmacología , Encéfalo/efectos de los fármacos , Intoxicación por MPTP/prevención & control , Metaloporfirinas/farmacología , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Administración Oral , Animales , Antioxidantes/administración & dosificación , Antioxidantes/farmacocinética , Antiparkinsonianos/administración & dosificación , Antiparkinsonianos/farmacocinética , Conducta Animal/efectos de los fármacos , Disponibilidad Biológica , Biomarcadores/metabolismo , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Encéfalo/fisiopatología , Permeabilidad Capilar , Modelos Animales de Enfermedad , Dopamina/metabolismo , Diseño de Fármacos , Evaluación Preclínica de Medicamentos , Semivida , Inyecciones Intraperitoneales , Intoxicación por MPTP/etiología , Intoxicación por MPTP/metabolismo , Intoxicación por MPTP/fisiopatología , Masculino , Metaloporfirinas/administración & dosificación , Metaloporfirinas/farmacocinética , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/farmacocinética , Prueba de Desempeño de Rotación con Aceleración Constante
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...