Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Pharmacol Exp Ther ; 297(1): 299-307, 2001 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11259557

RESUMEN

The effects of two beta(3)-adrenergic receptor agonists, (R)-4-[4-(3-cyclopentylpropyl)-4,5-dihydro-5-oxo-1H-tetrazol-1-yl]-N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]benzenesulfonamide and (R)-N-[4-[2-[[2-hydroxy-2-(3-pyridinyl)- ethyl]amino]ethyl]phenyl]-1-(4-octylthiazol-2-yl)-5-indolinesulfonamide, on indices of metabolic and cardiovascular function were studied in anesthetized rhesus monkeys. Both compounds are potent and specific agonists at human and rhesus beta(3)-adrenergic receptors. Intravenous administration of either compound produced dose-dependent lipolysis, increase in metabolic rate, peripheral vasodilatation, and tachycardia with no effects on mean arterial pressure. The increase in heart rate in response to either compound was biphasic with an initial rapid component coincident with the evoked peripheral vasodilatation and a second more slowly developing phase contemporaneous with the evoked increase in metabolic rate. Because both compounds exhibited weak binding to and activation of rhesus beta(1)-adrenergic receptors in vitro, it was hypothesized that the increase in heart rate may be reflexogenic in origin and proximally mediated via release of endogenous norepinephrine acting at cardiac beta(1)-adrenergic receptors. This hypothesis was confirmed by determining that beta(3)-adrenergic receptor agonist-evoked tachycardia was attenuated in the presence of propranolol and in ganglion-blocked animals, under which conditions there was no reduction in the evoked vasodilatation, lipolysis, or increase in metabolic rate. It is not certain whether the beta(3)-adrenergic receptor-evoked vasodilatation is a direct effect of compounds at beta(3)-adrenergic receptors in the peripheral vasculature or is secondary to the release or generation of an endogenous vasodilator. Peripheral vasodilatation in response to beta(3)-adrenergic receptor agonist administration was not attenuated in animals administered mepyramine, indomethacin, or calcitonin gene-related peptide(8-37). These findings are consistent with a direct vasodilator effect of beta(3)-adrenergic receptor agonists.


Asunto(s)
Agonistas de Receptores Adrenérgicos beta 3 , Agonistas Adrenérgicos beta/farmacología , Rubor/inducido químicamente , Frecuencia Cardíaca/efectos de los fármacos , Lipólisis/efectos de los fármacos , Reflejo/efectos de los fármacos , Adenilil Ciclasas/metabolismo , Anestesia , Animales , Células CHO , Cricetinae , Relación Dosis-Respuesta a Droga , Indometacina/farmacología , Macaca mulatta , Masculino , Propanolaminas/farmacología , Propranolol/farmacología
2.
J Biosci Bioeng ; 87(3): 386-9, 1999.
Artículo en Inglés | MEDLINE | ID: mdl-16232487

RESUMEN

A limited screen of several commercially-available and internally-produced lipases and esterases identified porcine liver esterase as a suitable biocatalyst for the enantioselective hydrolysis of a diester into its (S)-ester acid with high optical purity (99%). This (S)-ester acid is a precursor to an experimental growth hormone secretagogue. After identifying xanthan gum as the best emulsifier and optimizing the reaction conditions, hydrolysis rates of 1 g/l.h and final (S)-ester acid (ee > 99%) titers of about 8.5 g/l were routinely achieved. This process supported the production of preparative amounts of optically pure (S)-ester (ee > 99%) with a high reaction yield of 82%. Upon purification, the (S)-ester was successfully used in the subsequent synthetic steps to yield the growth hormone secretagogue.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA