Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genome Med ; 15(1): 62, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37612755

RESUMEN

BACKGROUND: Long-read sequencing is increasingly used to uncover structural variants in the human genome, both functionally neutral and deleterious. Structural variants occur more frequently in regions with a high homology or repetitive segments, and one rearrangement may predispose to additional events. Bartter syndrome type 3 (BS 3) is a monogenic tubulopathy caused by deleterious variants in the chloride channel gene CLCNKB, a high proportion of these being large gene deletions. Multiplex ligation-dependent probe amplification, the current diagnostic gold standard for this type of mutation, will indicate a simple homozygous gene deletion in biallelic deletion carriers. However, since the phenotypic spectrum of BS 3 is broad even among biallelic deletion carriers, we undertook a more detailed analysis of precise breakpoint regions and genomic structure. METHODS: Structural variants in 32 BS 3 patients from 29 families and one BS4b patient with CLCNKB deletions were investigated using long-read and synthetic long-read sequencing, as well as targeted long-read sequencing approaches. RESULTS: We report a ~3 kb duplication of 3'-UTR CLCNKB material transposed to the corresponding locus of the neighbouring CLCNKA gene, also found on ~50 % of alleles in healthy control individuals. This previously unknown common haplotype is significantly enriched in our cohort of patients with CLCNKB deletions (45 of 51 alleles with haplotype information, 2.2 kb and 3.0 kb transposition taken together, p=9.16×10-9). Breakpoint coordinates for the CLCNKB deletion were identifiable in 28 patients, with three being compound heterozygous. In total, eight different alleles were found, one of them a complex rearrangement with three breakpoint regions. Two patients had different CLCNKA/CLCNKB hybrid genes encoding a predicted CLCNKA/CLCNKB hybrid protein with likely residual function. CONCLUSIONS: The presence of multiple different deletion alleles in our cohort suggests that large CLCNKB gene deletions originated from many independently recurring genomic events clustered in a few hot spots. The uncovered associated sequence transposition haplotype apparently predisposes to these additional events. The spectrum of CLCNKB deletion alleles is broader than expected and likely still incomplete, but represents an obvious candidate for future genotype/phenotype association studies. We suggest a sensitive and cost-efficient approach, consisting of indirect sequence capture and long-read sequencing, to analyse disease-relevant structural variant hotspots in general.


Asunto(s)
Síndrome de Bartter , Humanos , Haplotipos , Alelos , Genoma Humano , Canales de Cloruro/genética
2.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34272288

RESUMEN

KdpFABC is an oligomeric K+ transport complex in prokaryotes that maintains ionic homeostasis under stress conditions. The complex comprises a channel-like subunit (KdpA) from the superfamily of K+ transporters and a pump-like subunit (KdpB) from the superfamily of P-type ATPases. Recent structural work has defined the architecture and generated contradictory hypotheses for the transport mechanism. Here, we use substrate analogs to stabilize four key intermediates in the reaction cycle and determine the corresponding structures by cryogenic electron microscopy. We find that KdpB undergoes conformational changes consistent with other representatives from the P-type superfamily, whereas KdpA, KdpC, and KdpF remain static. We observe a series of spherical densities that we assign as K+ or water and which define a pathway for K+ transport. This pathway runs through an intramembrane tunnel in KdpA and delivers ions to sites in the membrane domain of KdpB. Our structures suggest a mechanism where ATP hydrolysis is coupled to K+ transfer between alternative sites in KdpB, ultimately reaching a low-affinity site where a water-filled pathway allows release of K+ to the cytoplasm.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Adenosina Trifosfatasas/genética , Sitios de Unión , Proteínas de Transporte de Catión/genética , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Transporte Iónico , Proteínas de la Membrana/genética , Modelos Moleculares , Operón , Potasio/metabolismo
3.
Elife ; 92020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32955430

RESUMEN

KdpFABC is an ATP-dependent K+ pump that ensures bacterial survival in K+-deficient environments. Whereas transcriptional activation of kdpFABC expression is well studied, a mechanism for down-regulation when K+ levels are restored has not been described. Here, we show that KdpFABC is inhibited when cells return to a K+-rich environment. The mechanism of inhibition involves phosphorylation of Ser162 on KdpB, which can be reversed in vitro by treatment with serine phosphatase. Mutating Ser162 to Alanine produces constitutive activity, whereas the phosphomimetic Ser162Asp mutation inactivates the pump. Analyses of the transport cycle show that serine phosphorylation abolishes the K+-dependence of ATP hydrolysis and blocks the catalytic cycle after formation of the aspartyl phosphate intermediate (E1~P). This regulatory mechanism is unique amongst P-type pumps and this study furthers our understanding of how bacteria control potassium homeostasis to maintain cell volume and osmotic potential.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Transporte de Catión/metabolismo , Proteínas de Escherichia coli/metabolismo , ATPasas Tipo P/metabolismo , Potasio/metabolismo , Serina/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/genética , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Mutación/genética , ATPasas Tipo P/química , ATPasas Tipo P/genética , Fosforilación/genética
4.
Mol Membr Biol ; 35(1): 21-38, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31259644

RESUMEN

In bacteria, K+ is used to maintain cell volume and osmotic potential. Homeostasis normally involves a network of constitutively expressed transport systems, but in K+ deficient environments, the KdpFABC complex uses ATP to pump K+ into the cell. This complex appears to be a hybrid of two types of transporters, with KdpA descending from the superfamily of K+ transporters and KdpB belonging to the superfamily of P-type ATPases. Studies of enzymatic activity documented a catalytic cycle with hallmarks of classical P-type ATPases and studies of ion transport indicated that K+ import into the cytosol occurred in the second half of this cycle in conjunction with hydrolysis of an aspartyl phosphate intermediate. Atomic structures of the KdpFABC complex from X-ray crystallography and cryo-EM have recently revealed conformations before and after formation of this aspartyl phosphate that appear to contradict the functional studies. Specifically, structural comparisons with the archetypal P-type ATPase, SERCA, suggest that K+ transport occurs in the first half of the cycle, accompanying formation of the aspartyl phosphate. Further controversy has arisen regarding the path by which K+ crosses the membrane. The X-ray structure supports the conventional view that KdpA provides the conduit, whereas cryo-EM structures suggest that K+ moves from KdpA through a long, intramembrane tunnel to reach canonical ion binding sites in KdpB from which they are released to the cytosol. This review discusses evidence supporting these contradictory models and identifies key experiments needed to resolve discrepancies and produce a unified model for this fascinating mechanistic hybrid.


Asunto(s)
Adenosina Trifosfatasas , Proteínas de Transporte de Catión , Proteínas de Escherichia coli , Escherichia coli/enzimología , Complejos Multiproteicos/química , Potasio , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Sitios de Unión , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/metabolismo , Cristalografía por Rayos X , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Transporte Iónico/fisiología , Complejos Multiproteicos/metabolismo , Potasio/química , Potasio/metabolismo
5.
Front Physiol ; 8: 202, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28443028

RESUMEN

The plasma membrane H+-ATPase is a proton pump of the P-type ATPase family and essential in plants and fungi. It extrudes protons to regulate pH and maintains a strong proton-motive force that energizes e.g., secondary uptake of nutrients. The only crystal structure of a H+-ATPase (AHA2 from Arabidopsis thaliana) was reported in 2007. Here, we present an improved atomic model of AHA2, obtained by a combination of model rebuilding through interactive molecular dynamics flexible fitting (iMDFF) and structural refinement based on the original data, but using up-to-date refinement methods. More detailed map features prompted local corrections of the transmembrane domain, in particular rearrangement of transmembrane helices 7 and 8, and the cytoplasmic N- and P-domains, and the new model shows improved overall quality and reliability scores. The AHA2 structure shows similarity to the Ca2+-ATPase E1 state, and provides a valuable starting point model for structural and functional analysis of proton transport mechanism of P-type H+-ATPases. Specifically, Asp684 protonation associated with phosphorylation and occlusion of the E1P state may result from hydrogen bond interaction with Asn106. A subsequent deprotonation associated with extracellular release in the E2P state may result from an internal salt bridge formation to an Arg655 residue, which in the present E1 state is stabilized in a solvated pocket. A release mechanism based on an in-built counter-cation was also later proposed for Zn2+-ATPase, for which structures have been determined in Zn2+ released E2P-like states with the salt bridge interaction formed.

6.
Proc Natl Acad Sci U S A ; 113(17): 4711-6, 2016 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-27078104

RESUMEN

Cancerous cells have an acutely increased demand for energy, leading to increased levels of human glucose transporter 1 (hGLUT1). This up-regulation suggests hGLUT1 as a target for therapeutic inhibitors addressing a multitude of cancer types. Here, we present three inhibitor-bound, inward-open structures of WT-hGLUT1 crystallized with three different inhibitors: cytochalasin B, a nine-membered bicyclic ring fused to a 14-membered macrocycle, which has been described extensively in the literature of hGLUTs, and two previously undescribed Phe amide-derived inhibitors. Despite very different chemical backbones, all three compounds bind in the central cavity of the inward-open state of hGLUT1, and all binding sites overlap the glucose-binding site. The inhibitory action of the compounds was determined for hGLUT family members, hGLUT1-4, using cell-based assays, and compared with homology models for these hGLUT members. This comparison uncovered a probable basis for the observed differences in inhibition between family members. We pinpoint regions of the hGLUT proteins that can be targeted to achieve isoform selectivity, and show that these same regions are used for inhibitors with very distinct structural backbones. The inhibitor cocomplex structures of hGLUT1 provide an important structural insight for the design of more selective inhibitors for hGLUTs and hGLUT1 in particular.


Asunto(s)
Citocalasinas/química , Transportador de Glucosa de Tipo 1/antagonistas & inhibidores , Transportador de Glucosa de Tipo 1/ultraestructura , Glucosa/química , Fenilalanina/análogos & derivados , Secuencia de Aminoácidos , Sitios de Unión , Simulación por Computador , Secuencia Conservada , Humanos , Modelos Químicos , Modelos Moleculares , Fenilalanina/química , Unión Proteica , Conformación Proteica
7.
Curr Protoc Protein Sci ; 77: 29.11.1-29.11.14, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-25081745

RESUMEN

This unit describes rapid and generally applicable methods to identify conditions that stabilize membrane proteins using temperature-based denaturation measurements as a proxy for target time-dependent stability. Recent developments with thiol-reactive dyes sensitive to the unmasking of cysteine residues upon protein unfolding have allowed for routine application of thermostability assays to systematically evaluate the stability of membrane protein preparations after various purification procedures. Test conditions can include different lipid cocktails, lipid-detergent micelles, pH, salts, osmolytes, and potential active-site ligands. Identification and use of conditions that stabilize the structure have proven successful in enabling the structure determination of numerous families of membrane proteins that otherwise were intractable.


Asunto(s)
Lípidos/química , Proteínas de la Membrana/química , Proteínas de la Membrana/aislamiento & purificación , Micelas , Cristalografía por Rayos X/métodos , Concentración de Iones de Hidrógeno
8.
PLoS One ; 9(1): e85139, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24465495

RESUMEN

BACKGROUND: Structured Logistic Regression (SLR) is a newly developed machine learning tool first proposed in the context of text categorization. Current availability of extensive protein sequence databases calls for an automated method to reliably classify sequences and SLR seems well-suited for this task. The classification of P-type ATPases, a large family of ATP-driven membrane pumps transporting essential cations, was selected as a test-case that would generate important biological information as well as provide a proof-of-concept for the application of SLR to a large scale bioinformatics problem. RESULTS: Using SLR, we have built classifiers to identify and automatically categorize P-type ATPases into one of 11 pre-defined classes. The SLR-classifiers are compared to a Hidden Markov Model approach and shown to be highly accurate and scalable. Representing the bulk of currently known sequences, we analysed 9.3 million sequences in the UniProtKB and attempted to classify a large number of P-type ATPases. To examine the distribution of pumps on organisms, we also applied SLR to 1,123 complete genomes from the Entrez genome database. Finally, we analysed the predicted membrane topology of the identified P-type ATPases. CONCLUSIONS: Using the SLR-based classification tool we are able to run a large scale study of P-type ATPases. This study provides proof-of-concept for the application of SLR to a bioinformatics problem and the analysis of P-type ATPases pinpoints new and interesting targets for further biochemical characterization and structural analysis.


Asunto(s)
Modelos Logísticos , Análisis de Secuencia de Proteína/métodos , Algoritmos , Secuencia de Aminoácidos , Inteligencia Artificial , Biología Computacional/métodos , Bases de Datos de Proteínas , Alineación de Secuencia , Programas Informáticos
9.
Nature ; 496(7446): 533-6, 2013 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-23542591

RESUMEN

Phosphate is crucial for structural and metabolic needs, including nucleotide and lipid synthesis, signalling and chemical energy storage. Proton-coupled transporters of the major facilitator superfamily (MFS) are essential for phosphate uptake in plants and fungi, and also have a function in sensing external phosphate levels as transceptors. Here we report the 2.9 Å structure of a fungal (Piriformospora indica) high-affinity phosphate transporter, PiPT, in an inward-facing occluded state, with bound phosphate visible in the membrane-buried binding site. The structure indicates both proton and phosphate exit pathways and suggests a modified asymmetrical 'rocker-switch' mechanism of phosphate transport. PiPT is related to several human transporter families, most notably the organic cation and anion transporters of the solute carrier family (SLC22), which are implicated in cancer-drug resistance. We modelled representative cation and anion SLC22 transporters based on the PiPT structure to surmise the structural basis for substrate binding and charge selectivity in this important family. The PiPT structure demonstrates and expands on principles of substrate transport by the MFS transporters and illuminates principles of phosphate uptake in particular.


Asunto(s)
Basidiomycota/química , Células Eucariotas/química , Proteínas de Transporte de Fosfato/química , Sitios de Unión , Cristalografía por Rayos X , Humanos , Modelos Biológicos , Modelos Moleculares , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Conformación Proteica , Protones , Relación Estructura-Actividad
10.
Methods ; 55(4): 273-80, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21925269

RESUMEN

It is often an immense challenge to overexpress human membrane proteins at levels sufficient for structural studies. The use of Human Embryonic Kidney 293 (HEK 293) cells to express full-length human membrane proteins is becoming increasingly common, since these cells provide a near-native protein folding and lipid environment. Nevertheless, the labor intensiveness and low yields of HEK 293 cells and other mammalian cell expression systems necessitate the screening for suitable expression as early as possible. Here we present our methodology used to generate constructs of human membrane proteins and to rapidly assess their suitability for overexpression using transiently transfected, glycosylation-deficient GnT I-HEK 293 cells (HEK 293S). Constructs, in the presence or absence of a C-terminal enhanced green fluorescence protein (EGFP) molecule, are made in a modular manner, allowing for the rapid generation of several combinations of fusion tags and gene paralogues/orthologues. Solubilization of HEK 293S cells, using a range of detergents, followed by Western blotting is performed to assess relative expression levels and to detect possible degradation products. Fluorescence-detection size exclusion chromatography (FSEC) is employed to assess expression levels and overall homogeneity of the membrane proteins, to rank different constructs for further downstream expression trials. Constructs identified as having high expression are instantly suitable for further downstream large scale transient expression trials and stable cell line generation. The method described is accessible to all laboratory scales and can be completed in approximately 3 weeks.


Asunto(s)
Proteínas de la Membrana/biosíntesis , Proteínas Recombinantes de Fusión/biosíntesis , Western Blotting , Cromatografía en Gel , Clonación Molecular , Expresión Génica , Vectores Genéticos , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/aislamiento & purificación , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/aislamiento & purificación , Reacción en Cadena de la Polimerasa , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Solubilidad , Transfección
11.
Nat Rev Mol Cell Biol ; 12(1): 60-70, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21179061

RESUMEN

Plasma membrane ATPases are primary active transporters of cations that maintain steep concentration gradients. The ion gradients and membrane potentials derived from them form the basis for a range of essential cellular processes, in particular Na(+)-dependent and proton-dependent secondary transport systems that are responsible for uptake and extrusion of metabolites and other ions. The ion gradients are also both directly and indirectly used to control pH homeostasis and to regulate cell volume. The plasma membrane H(+)-ATPase maintains a proton gradient in plants and fungi and the Na(+),K(+)-ATPase maintains a Na(+) and K(+) gradient in animal cells. Structural information provides insight into the function of these two distinct but related P-type pumps.


Asunto(s)
Membrana Celular/metabolismo , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/química , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Membrana Celular/química , Humanos
12.
Proc Natl Acad Sci U S A ; 107(50): 21400-5, 2010 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-21098259

RESUMEN

The activity of P-type plasma membrane H(+)-ATPases is modulated by H(+) and cations, with K(+) and Ca(2+) being of physiological relevance. Using X-ray crystallography, we have located the binding site for Rb(+) as a K(+) congener, and for Tb(3+) and Ho(3+) as Ca(2+) congeners. Rb(+) is found coordinated by a conserved aspartate residue in the phosphorylation domain. A single Tb(3+) ion is identified positioned in the nucleotide-binding domain in close vicinity to the bound nucleotide. Ho(3+) ions are coordinated at two distinct sites within the H(+)-ATPase: One site is at the interface of the nucleotide-binding and phosphorylation domains, and the other is in the transmembrane domain toward the extracellular side. The identified binding sites are suggested to represent binding pockets for regulatory cations and a H(+) binding site for protons leaving the pump molecule. This implicates Ho(3+) as a novel chemical tool for identification of proton binding sites.


Asunto(s)
Cationes/química , Membrana Celular/química , Estructura Terciaria de Proteína , Bombas de Protones/química , Protones , Sitios de Unión , Cristalografía por Rayos X , Prueba de Complementación Genética , Metales/química , Datos de Secuencia Molecular , Mutación Puntual , Bombas de Protones/genética , Saccharomyces cerevisiae
13.
Acta Crystallogr D Biol Crystallogr ; 66(Pt 3): 309-13, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20179343

RESUMEN

An approach is presented for the structure determination of membrane proteins on the basis of poorly diffracting crystals which exploits molecular replacement for heavy-atom site identification at 6-9 A maximum resolution and improvement of the heavy-atom-derived phases by multi-crystal averaging using quasi-isomorphous data sets. The multi-crystal averaging procedure allows real-space density averaging followed by phase combination between non-isomorphous native data sets to exploit crystal-to-crystal nonisomorphism despite the crystals belonging to the same space group. This approach has been used in the structure determination of H(+)-ATPase and Na(+),K(+)-ATPase using Ca(2+)-ATPase models and its successful application to the Mhp1 symporter using LeuT as a search model is demonstrated.


Asunto(s)
Proteínas de Arabidopsis/química , ATPasas de Translocación de Protón/química , ATPasa Intercambiadora de Sodio-Potasio/química , Animales , Cristalografía por Rayos X , Modelos Moleculares , Estructura Terciaria de Proteína , Porcinos
14.
Biochim Biophys Acta ; 1787(4): 207-20, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19388138

RESUMEN

P-type ATPases catalyze the selective active transport of ions like H+, Na+, K+, Ca2+, Zn2+, and Cu2+ across diverse biological membrane systems. Many members of the P-type ATPase protein family, such as the Na+,K+-, H+,K+-, Ca2+-, and H+-ATPases, are involved in the development of pathophysiological conditions or provide critical function to pathogens. Therefore, they seem to be promising targets for future drugs and novel antifungal agents and herbicides. Here, we review the current knowledge about P-type ATPase inhibitors and their present use as tools in science, medicine, and biotechnology. Recent structural information on a variety of P-type ATPase family members signifies that all P-type ATPases can be expected to share a similar basic structure and a similar basic machinery of ion transport. The ion transport pathway crossing the membrane lipid bilayer is constructed of two access channels leading from either side of the membrane to the ion binding sites at a central cavity. The selective opening and closure of the access channels allows vectorial access/release of ions from the binding sites. Recent structural information along with new homology modeling of diverse P-type ATPases in complex with known ligands demonstrate that the most proficient way for the development of efficient and selective drugs is to target their ion transport pathway.


Asunto(s)
Adenosina Trifosfatasas/antagonistas & inhibidores , Medicina , Preparaciones Farmacéuticas , Ciencia , Adenosina Trifosfatasas/química , Animales , Humanos , Modelos Moleculares , Inhibidores de la Bomba de Protones , Bombas de Protones/química
15.
Nature ; 450(7172): 1043-9, 2007 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-18075585

RESUMEN

The Na+,K+-ATPase generates electrochemical gradients for sodium and potassium that are vital to animal cells, exchanging three sodium ions for two potassium ions across the plasma membrane during each cycle of ATP hydrolysis. Here we present the X-ray crystal structure at 3.5 A resolution of the pig renal Na+,K+-ATPase with two rubidium ions bound (as potassium congeners) in an occluded state in the transmembrane part of the alpha-subunit. Several of the residues forming the cavity for rubidium/potassium occlusion in the Na+,K+-ATPase are homologous to those binding calcium in the Ca2+-ATPase of sarco(endo)plasmic reticulum. The beta- and gamma-subunits specific to the Na+,K+-ATPase are associated with transmembrane helices alphaM7/alphaM10 and alphaM9, respectively. The gamma-subunit corresponds to a fragment of the V-type ATPase c subunit. The carboxy terminus of the alpha-subunit is contained within a pocket between transmembrane helices and seems to be a novel regulatory element controlling sodium affinity, possibly influenced by the membrane potential.


Asunto(s)
Potasio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/química , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Sodio/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Sitios de Unión , Cationes Monovalentes/metabolismo , Membrana Celular/metabolismo , Cristalización , Cristalografía por Rayos X , Fluoruros , Riñón/enzimología , Compuestos de Magnesio , Potenciales de la Membrana , Modelos Moleculares , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Porcinos
16.
Nature ; 450(7172): 1111-4, 2007 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-18075595

RESUMEN

A prerequisite for life is the ability to maintain electrochemical imbalances across biomembranes. In all eukaryotes the plasma membrane potential and secondary transport systems are energized by the activity of P-type ATPase membrane proteins: H+-ATPase (the proton pump) in plants and fungi, and Na+,K+-ATPase (the sodium-potassium pump) in animals. The name P-type derives from the fact that these proteins exploit a phosphorylated reaction cycle intermediate of ATP hydrolysis. The plasma membrane proton pumps belong to the type III P-type ATPase subfamily, whereas Na+,K+-ATPase and Ca2+-ATPase are type II. Electron microscopy has revealed the overall shape of proton pumps, however, an atomic structure has been lacking. Here we present the first structure of a P-type proton pump determined by X-ray crystallography. Ten transmembrane helices and three cytoplasmic domains define the functional unit of ATP-coupled proton transport across the plasma membrane, and the structure is locked in a functional state not previously observed in P-type ATPases. The transmembrane domain reveals a large cavity, which is likely to be filled with water, located near the middle of the membrane plane where it is lined by conserved hydrophilic and charged residues. Proton transport against a high membrane potential is readily explained by this structural arrangement.


Asunto(s)
Arabidopsis/enzimología , Membrana Celular/enzimología , Bombas de Protones/química , Sitios de Unión , ATPasas Transportadoras de Calcio/química , ATPasas Transportadoras de Calcio/metabolismo , Cristalografía por Rayos X , Transporte Iónico , Modelos Moleculares , Fosforilación , Bombas de Protones/metabolismo , Protones , Electricidad Estática , Homología Estructural de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...