Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-37987012

RESUMEN

Polarized vesicular trafficking directs specific receptors and ion channels to cilia, but the underlying mechanisms are poorly understood. Here we describe a role for DLG1, a core component of the Scribble polarity complex, in regulating ciliary protein trafficking in kidney epithelial cells. Conditional knockout of Dlg1 in mouse kidney caused ciliary elongation and cystogenesis, and cell-based proximity labelling proteomics and fluorescence microscopy showed alterations in the ciliary proteome upon loss of DLG1. Specifically, the retromer-associated protein SDCCAG3, IFT20 and polycystin-2 (PC2) were reduced in cilia of DLG1 deficient cells compared to control cells. This phenotype was recapitulated in vivo and rescuable by re-expression of wildtype DLG1, but not a Congenital Anomalies of the Kidney and Urinary Tract (CAKUT)-associated DLG1 variant, p.T489R. Finally, biochemical approaches and Alpha Fold modelling suggested that SDCCAG3 and IFT20 form a complex that associates, at least indirectly, with DLG1. Our work identifies a key role for DLG1 in regulating ciliary protein composition and suggests that ciliary dysfunction of the p.T489R DLG1 variant may contribute to CAKUT.

2.
Nat Rev Genet ; 24(7): 421-441, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37072495

RESUMEN

Primary cilia, antenna-like sensory organelles protruding from the surface of most vertebrate cell types, are essential for regulating signalling pathways during development and adult homeostasis. Mutations in genes affecting cilia cause an overlapping spectrum of >30 human diseases and syndromes, the ciliopathies. Given the immense structural and functional diversity of the mammalian cilia repertoire, there is a growing disconnect between patient genotype and associated phenotypes, with variable severity and expressivity characteristic of the ciliopathies as a group. Recent technological developments are rapidly advancing our understanding of the complex mechanisms that control biogenesis and function of primary cilia across a range of cell types and are starting to tackle this diversity. Here, we examine the structural and functional diversity of primary cilia, their dynamic regulation in different cellular and developmental contexts and their disruption in disease.


Asunto(s)
Cilios , Ciliopatías , Adulto , Animales , Humanos , Cilios/genética , Cilios/metabolismo , Transducción de Señal , Ciliopatías/genética , Ciliopatías/metabolismo , Mamíferos
3.
Front Cell Dev Biol ; 11: 1113656, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36776558

RESUMEN

Establishment and maintenance of the primary cilium as a signaling-competent organelle requires a high degree of fine tuning, which is at least in part achieved by a variety of post-translational modifications. One such modification is ubiquitination. The small and highly conserved ubiquitin protein possesses a unique versatility in regulating protein function via its ability to build mono and polyubiquitin chains onto target proteins. We aimed to take an unbiased approach to generate a comprehensive blueprint of the ciliary ubiquitinome by deploying a multi-proteomics approach using both ciliary-targeted ubiquitin affinity proteomics, as well as ubiquitin-binding domain-based proximity labelling in two different mammalian cell lines. This resulted in the identification of several key proteins involved in signaling, cytoskeletal remodeling and membrane and protein trafficking. Interestingly, using two different approaches in IMCD3 and RPE1 cells, respectively, we uncovered several novel mechanisms that regulate cilia function. In our IMCD3 proximity labeling cell line model, we found a highly enriched group of ESCRT-dependent clathrin-mediated endocytosis-related proteins, suggesting an important and novel role for this pathway in the regulation of ciliary homeostasis and function. In contrast, in RPE1 cells we found that several structural components of caveolae (CAV1, CAVIN1, and EHD2) were highly enriched in our cilia affinity proteomics screen. Consistently, the presence of caveolae at the ciliary pocket and ubiquitination of CAV1 specifically, were found likely to play a role in the regulation of ciliary length in these cells. Cilia length measurements demonstrated increased ciliary length in RPE1 cells stably expressing a ubiquitination impaired CAV1 mutant protein. Furthermore, live cell imaging in the same cells revealed decreased CAV1 protein turnover at the cilium as the possible cause for this phenotype. In conclusion, we have generated a comprehensive list of cilia-specific proteins that are subject to regulation via ubiquitination which can serve to further our understanding of cilia biology in health and disease.

4.
J Cell Sci ; 136(5)2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35403186

RESUMEN

Primary cilia are microtubule-based sensory organelles whose assembly and function rely on the conserved bidirectional intraflagellar transport (IFT) system, which is powered by anterograde kinesin-2 and retrograde cytoplasmic dynein-2 motors. Nematodes additionally employ a cell-type-specific kinesin-3 motor, KLP-6, which moves within cilia independently of IFT and regulates ciliary content and function. Here, we provide evidence that a KLP-6 homolog, KIF13B, undergoes bursts of bidirectional movement within primary cilia of cultured immortalized human retinal pigment epithelial (hTERT-RPE1) cells. Anterograde and retrograde intraciliary velocities of KIF13B were similar to those of IFT (as assayed using IFT172-eGFP), but intraciliary movement of KIF13B required its own motor domain and appeared to be cell-type specific. Our work provides the first demonstration of motor-driven, intraciliary movement by a vertebrate kinesin other than kinesin-2 motors.


Asunto(s)
Cilios , Cinesinas , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Transporte Biológico , Cilios/metabolismo , Proteínas del Citoesqueleto/metabolismo , Flagelos/metabolismo , Humanos , Cinesinas/genética , Microtúbulos
5.
Bio Protoc ; 12(6): e4360, 2022 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-35434191

RESUMEN

The centrosome is the main microtubule-organizing center of animal cells, and is composed of two barrel-shaped microtubule-based centrioles embedded in protein dense pericentriolar material. Compositional and architectural re-organization of the centrosome drives its duplication, and enables its microtubule-organizing activity and capability to form the primary cilium, which extends from the mature (mother) centriole, as the cell exits the cell cycle. Centrosomes and primary cilia are essential to human health, signified by the causal role of centrosome- and cilia-aberrations in numerous congenic disorders, as well as in the etiology and progression of cancer. The list of disease-associated centrosomal proteins and their proximitomes is steadily expanding, emphasizing the need for high resolution mapping of such proteins to specific substructures of the organelle. Here, we provide a detailed 3D-structured illumination microscopy (3D-SIM) protocol for comparative localization analysis of fluorescently labeled proteins at the centrosome in fixed human cell lines, at approximately 120 nm lateral and 300 nm axial resolution. The procedure was optimized to work with primary antibodies previously known to depend on more disruptive fixation reagents, yet largely preserves centriole and centrosome architecture, as shown by transposing acquired images of landmark proteins on previously published transmission electron microscopy (TEM) images of centrosomes. Even more advantageously, it is compatible with fluorescent protein tags. Finally, we introduce an internal reference to ensure correct 3D channel alignment. This protocol hence enables flexible, swift, and information-rich localization and interdependence analyses of centrosomal proteins, as well as their disorder-associated mutations.

6.
Elife ; 92020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-33174839

RESUMEN

Intracellular transport relies on multiple kinesins, but it is poorly understood which kinesins are present on particular cargos, what their contributions are and whether they act simultaneously on the same cargo. Here, we show that Rab6-positive secretory vesicles are transported from the Golgi apparatus to the cell periphery by kinesin-1 KIF5B and kinesin-3 KIF13B, which determine the location of secretion events. KIF5B plays a dominant role, whereas KIF13B helps Rab6 vesicles to reach freshly polymerized microtubule ends, to which KIF5B binds poorly, likely because its cofactors, MAP7-family proteins, are slow in populating these ends. Sub-pixel localization demonstrated that during microtubule plus-end directed transport, both kinesins localize to the vesicle front and can be engaged on the same vesicle. When vesicles reverse direction, KIF13B relocates to the middle of the vesicle, while KIF5B shifts to the back, suggesting that KIF5B but not KIF13B undergoes a tug-of-war with a minus-end directed motor.


Asunto(s)
Cinesinas/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Células HeLa , Humanos , Cinesinas/genética , Microtúbulos , Transporte de Proteínas , Vesículas Transportadoras , Proteínas de Unión al GTP rab/genética
7.
Methods Mol Biol ; 2169: 27-41, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32548816

RESUMEN

Recent evidence has indicated that caveolins are localized at the base of primary cilia, which are microtubule-based sensory organelles present on the cell surface, and that Caveolin-1 (CAV1) plays important roles in regulating ciliary membrane composition and function. Here we describe methods to analyze the localization and function of CAV1 in primary cilia of cultured mammalian cells. These include methods for culturing and transfecting mammalian cells with a CAV1-encoding plasmid or small interfering RNA (siRNA), analysis of mammalian cells by immunofluorescence microscopy (IFM) with antibodies against ciliary markers and CAV1, as well as methods for analyzing ciliary CAV1 function in siRNA-treated cells by IFM and cell-based signaling assays.


Asunto(s)
Caveolina 1/metabolismo , Técnicas de Cultivo de Célula/métodos , Cilios/metabolismo , Microscopía Fluorescente/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Animales , Caveolina 1/genética , Línea Celular , Células Cultivadas , Humanos , ARN Interferente Pequeño , Transducción de Señal/genética
8.
Front Oncol ; 10: 687, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32457840

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a major cause of cancer-related death, with a 5-year survival of <10% and severely limited treatment options. PDAC hallmarks include profound metabolic acid production and aggressive local proliferation and invasiveness. This phenotype is supported by upregulated net acid extrusion and epithelial-to-mesenchymal transition (EMT), the latter typically induced by aberrant transforming growth factor-ß (TGFß) signaling. It is, however, unknown whether TGFß-induced EMT and upregulation of acid extrusion are causally related. Here, we show that mRNA and protein expression of the net acid extruding transporters Na+/H+ exchanger 1 (NHE1, SLC9A1) and Na+, HCO 3 - cotransporter 1 (NBCn1, SLC4A7) are increased in a panel of human PDAC cell lines compared to immortalized human pancreatic ductal epithelial (HPDE) cells. Treatment of Panc-1 cells (which express SMAD4, required for canonical TGFß signaling) with TGFß-1 for 48 h elicited classical EMT with down- and upregulation of epithelial and mesenchymal markers, respectively, in a manner inhibited by SMAD4 knockdown. Accordingly, less pronounced EMT was induced in BxPC-3 cells, which do not express SMAD4. TGFß-1 treatment elicited a SMAD4-dependent increase in NHE1 expression, and a smaller, SMAD4-independent increase in NBCn1 in Panc-1 cells. Consistent with this, TGFß-1 treatment led to elevated intracellular pH and increased net acid extrusion capacity in Panc-1 cells, but not in BxPC-3 cells, in an NHE1-dependent manner. Proliferation was increased in Panc-1 cells and decreased in BxPC-3 cells, upon TGFß-1 treatment, and this, as well as EMT per se, was unaffected by NHE1- or NBCn1 inhibition. TGFß-1-induced EMT was associated with a 4-fold increase in Panc-1 cell invasiveness, which further increased ~10-fold upon knockdown of the tumor suppressor Merlin (Neurofibromatosis type 2). Knockdown of NHE1 or NBCn1 abolished Merlin-induced invasiveness, but not that induced by TGFß-1 alone. In conclusion, NHE1 and NBCn1 expression and NHE-dependent acid extrusion are upregulated during TGFß-1-induced EMT of Panc-1 cells. NHE1 upregulation is SMAD4-dependent, and SMAD4-deficient BxPC-3 cells show no change in pHi regulation. NHE1 and NBCn1 are not required for EMT per se or EMT-associated proliferation changes, but are essential for the potentiation of invasiveness induced by Merlin knockdown.

9.
Hum Mutat ; 41(5): 998-1011, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31999394

RESUMEN

Inactivating variants in the centrosomal CEP78 gene have been found in cone-rod dystrophy with hearing loss (CRDHL), a particular phenotype distinct from Usher syndrome. Here, we identified and functionally characterized the first CEP78 missense variant c.449T>C, p.(Leu150Ser) in three CRDHL families. The variant was found in a biallelic state in two Belgian families and in a compound heterozygous state-in trans with c.1462-1G>T-in a third German family. Haplotype reconstruction showed a founder effect. Homology modeling revealed a detrimental effect of p.(Leu150Ser) on protein stability, which was corroborated in patients' fibroblasts. Elongated primary cilia without clear ultrastructural abnormalities in sperm or nasal brushes suggest impaired cilia assembly. Two affected males from different families displayed sperm abnormalities causing infertility. One of these is a heterozygous carrier of a complex allele in SPAG17, a ciliary gene previously associated with autosomal recessive male infertility. Taken together, our data indicate that a missense founder allele in CEP78 underlies the same sensorineural CRDHL phenotype previously associated with inactivating variants. Interestingly, the CEP78 phenotype has been possibly expanded with male infertility. Finally, CEP78 loss-of-function variants may have an underestimated role in misdiagnosed Usher syndrome, with or without sperm abnormalities.


Asunto(s)
Alelos , Proteínas de Ciclo Celular/genética , Distrofias de Conos y Bastones/genética , Efecto Fundador , Pérdida Auditiva/genética , Infertilidad Masculina/genética , Mutación Missense , Adolescente , Proteínas de Ciclo Celular/química , Cilios/metabolismo , Cilios/ultraestructura , Distrofias de Conos y Bastones/diagnóstico , Análisis Mutacional de ADN , Femenino , Fibroblastos/metabolismo , Genotipo , Pérdida Auditiva/diagnóstico , Humanos , Infertilidad Masculina/diagnóstico , Masculino , Persona de Mediana Edad , Modelos Moleculares , Linaje , Fenotipo , Conformación Proteica , Relación Estructura-Actividad , Síndrome , Secuenciación del Exoma
10.
Cell Rep ; 28(7): 1907-1922.e6, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31412255

RESUMEN

CEP104 is an evolutionarily conserved centrosomal and ciliary tip protein. CEP104 loss-of-function mutations are reported in patients with Joubert syndrome, but their function in the etiology of ciliopathies is poorly understood. Here, we show that cep104 silencing in zebrafish causes cilia-related manifestations: shortened cilia in Kupffer's vesicle, heart laterality, and cranial nerve development defects. We show that another Joubert syndrome-associated cilia tip protein, CSPP1, interacts with CEP104 at microtubules for the regulation of axoneme length. We demonstrate in human telomerase reverse transcriptase-immortalized retinal pigmented epithelium (hTERT-RPE1) cells that ciliary translocation of Smoothened in response to Hedgehog pathway stimulation is both CEP104 and CSPP1 dependent. However, CEP104 is not required for the ciliary recruitment of CSPP1, indicating that an intra-ciliary CEP104-CSPP1 complex controls axoneme length and Hedgehog signaling competence. Our in vivo and in vitro analyses of CEP104 define its interaction with CSPP1 as a requirement for the formation of Hedgehog signaling-competent cilia, defects that underlie Joubert syndrome.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cilios/fisiología , Ciliopatías/patología , Proteínas Hedgehog/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Células Cultivadas , Ciliopatías/metabolismo , Proteínas Hedgehog/genética , Humanos , Proteínas Asociadas a Microtúbulos/genética , Mutación , Epitelio Pigmentado de la Retina/citología , Transducción de Señal , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
11.
Cell Rep ; 22(10): 2584-2592, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29514088

RESUMEN

The centrosome is the main microtubule-organizing center in animal cells and comprises a mother and daughter centriole surrounded by pericentriolar material. During formation of primary cilia, the mother centriole transforms into a basal body that templates the ciliary axoneme. Ciliogenesis depends on mother centriole-specific distal appendages, whereas the role of subdistal appendages in ciliary function is unclear. Here, we identify CEP128 as a centriole subdistal appendage protein required for regulating ciliary signaling. Loss of CEP128 did not grossly affect centrosomal or ciliary structure but caused impaired transforming growth factor-ß/bone morphogenetic protein (TGF-ß/BMP) signaling in zebrafish and at the primary cilium in cultured mammalian cells. This phenotype is likely the result of defective vesicle trafficking at the cilium as ciliary localization of RAB11 was impaired upon loss of CEP128, and quantitative phosphoproteomics revealed that CEP128 loss affects TGF-ß1-induced phosphorylation of multiple proteins that regulate cilium-associated vesicle trafficking.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Centriolos/metabolismo , Cilios/metabolismo , Proteínas de Microtúbulos/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Centrosoma/metabolismo , Humanos , Transporte de Proteínas , Proteínas de Unión al GTP rab/metabolismo
12.
Nat Commun ; 8: 14177, 2017 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-28134340

RESUMEN

Ciliary membrane composition is controlled by transition zone (TZ) proteins such as RPGRIP1, RPGRIPL and NPHP4, which are vital for balanced coordination of diverse signalling systems like the Sonic hedgehog (Shh) pathway. Activation of this pathway involves Shh-induced ciliary accumulation of Smoothened (SMO), which is disrupted by disease-causing mutations in TZ components. Here we identify kinesin-3 motor protein KIF13B as a novel member of the RPGRIP1N-C2 domain-containing protein family and show that KIF13B regulates TZ membrane composition and ciliary SMO accumulation. KIF13B is upregulated during ciliogenesis and is recruited to the ciliary base by NPHP4, which binds to two distinct sites in the KIF13B tail region, including an RPGRIP1N-C2 domain. KIF13B and NPHP4 are both essential for establishment of a CAV1 membrane microdomain at the TZ, which in turn is required for Shh-induced ciliary SMO accumulation. Thus KIF13B is a novel regulator of ciliary TZ configuration, membrane composition and Shh signalling.


Asunto(s)
Caveolina 1/metabolismo , Cilios/fisiología , Cinesinas/metabolismo , Proteínas/metabolismo , Transducción de Señal/fisiología , Receptor Smoothened/metabolismo , Animales , Línea Celular , Membrana Celular/metabolismo , Membrana Celular/fisiología , Biología Computacional , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/fisiología , Técnicas de Inactivación de Genes , Células HEK293 , Proteínas Hedgehog/metabolismo , Humanos , Cinesinas/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Células 3T3 NIH , Dominios Proteicos/fisiología , Regulación hacia Arriba , Proteína con Dedos de Zinc GLI1/genética , Proteína con Dedos de Zinc GLI1/metabolismo
14.
Artículo en Inglés | MEDLINE | ID: mdl-27638178

RESUMEN

Since the beginning of the millennium, research in primary cilia has revolutionized our way of understanding how cells integrate and organize diverse signaling pathways during vertebrate development and in tissue homeostasis. Primary cilia are unique sensory organelles that detect changes in their extracellular environment and integrate and transmit signaling information to the cell to regulate various cellular, developmental, and physiological processes. Many different signaling pathways have now been shown to rely on primary cilia to function properly, and mutations that lead to ciliary dysfunction are at the root of a pleiotropic group of diseases and syndromic disorders called ciliopathies. In this review, we present an overview of primary cilia-mediated regulation of receptor tyrosine kinase (RTK) and transforming growth factor ß (TGF-ß) signaling. Further, we discuss how defects in the coordination of these pathways may be linked to ciliopathies.


Asunto(s)
Cilios/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Células 3T3-L1 , Animales , Centriolos/metabolismo , Endocitosis , Genoma Humano , Aparato de Golgi/metabolismo , Homeostasis , Humanos , Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ratones , Microscopía Fluorescente , Mutación , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo
15.
Methods Mol Biol ; 1454: 15-33, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27514913

RESUMEN

A growing number of studies have used new generation technologies to characterize the protein constituents of cilia and centrosomes. This has led to the identification of a vast number of candidate ciliary or centrosomal proteins, whose subcellular localization needs to be investigated and validated. Here, we describe a simple and inexpensive method for analyzing the subcellular localization of candidate cilium- or centrosome-associated proteins, and we illustrate the utility as well as the pitfalls of this method by applying it to a group of ASH (ASPM, SPD-2, Hydin) domain-containing proteins, previously predicted to be cilia- or centrosome-associated proteins based on bioinformatic analyses. By generating plasmids coding for epitope-tagged full-length (FL) or truncated versions of the ASH domain-containing proteins TRAPPC8, TRAPPC13, NPHP4, and DLEC1, followed by expression and quantitative immunofluorescence microscopy (IFM) analysis in cultured human telomerase-immortalized retinal pigmented epithelial (hTERT-RPE1) cells, we could confirm that TRAPPC13 and NPHP4 are highly enriched at the base of primary cilia, whereas DLEC1 seems to associate specifically with motile cilia. Results for TRAPPC8 were inconclusive since epitope-tagged TRAPPC8 fusion proteins were unstable/degraded in cells, emphasizing the need for combining IFM analysis with western blotting in such studies. The method described should be applicable to other candidate ciliary or centrosomal proteins as well.


Asunto(s)
Centrosoma/metabolismo , Cilios/metabolismo , Estudios de Asociación Genética , Dominios Proteicos , Animales , Western Blotting , Línea Celular , Clonación Molecular , ADN Complementario , Expresión Génica , Humanos , Microscopía Fluorescente , Transfección
16.
Trends Biochem Sci ; 41(9): 784-797, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27364476

RESUMEN

Primary cilia are dynamic signaling organelles that project from the cell surface to sense diverse chemical, physical and morphogenetic cues. Ciliary defects therefore cause diseases (ciliopathies) that affect multiple organs in developing and adult organisms. Cilia-mediated signaling involves the orchestrated movement of signaling proteins in and out of the ciliary compartment, including movement of receptors such as the Sonic Hedgehog (Shh) receptor Patched 1 (PTCH1), Smoothened (SMO), and various other G protein-coupled receptors (GPCRs), as well as transforming growth factor ß (TGF-ß) receptors I and II (TGF-ß-RI/II). We provide here a current understanding of trafficking events associated with cilia-mediated signaling, with emphasis on the involvement of clathrin-dependent receptor-mediated endocytosis in regulating ciliary Shh and TGF-ß signaling.


Asunto(s)
Cilios/metabolismo , Endocitosis , Transducción de Señal , Proteínas Hedgehog/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
17.
J Cell Sci ; 128(19): 3543-9, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26290382

RESUMEN

Primary cilia are microtubule-based sensory organelles projecting from most quiescent mammalian cells, which disassemble in cells cultured in serum-deprived conditions upon re-addition of serum or growth factors. Platelet-derived growth factors (PDGF) are implicated in deciliation, but the specific receptor isoforms and mechanisms involved are unclear. We report that PDGFRß promotes deciliation in cultured cells and provide evidence implicating PLCγ and intracellular Ca(2+) release in this process. Activation of wild-type PDGFRα alone did not elicit deciliation. However, expression of constitutively active PDGFRα D842V mutant receptor, which potently activates PLCγ (also known as PLCG1), caused significant deciliation, and this phenotype was rescued by inhibiting PDGFRα D842V kinase activity or AURKA. We propose that PDGFRß and PDGFRα D842V promote deciliation through PLCγ-mediated Ca(2+) release from intracellular stores, causing activation of calmodulin and AURKA-triggered deciliation.


Asunto(s)
Aurora Quinasa A/metabolismo , Cilios/metabolismo , Fosfolipasa C gamma/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Animales , Aurora Quinasa A/genética , Línea Celular , Electroforesis en Gel de Poliacrilamida , Microscopía Fluorescente , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética
18.
Cilia ; 4: 5, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25974046

RESUMEN

The Cilia 2014 conference was organised by four European networks: the Ciliopathy Alliance, the Groupement de Recherche CIL, the Nordic Cilia and Centrosome Network and the EU FP7 programme SYSCILIA. More than 400 delegates from 27 countries gathered at the Institut Pasteur conference centre in Paris, including 30 patients and patient representatives. The meeting offered a unique opportunity for exchange between different scientific and medical communities. Major highlights included new discoveries about the roles of motile and immotile cilia during development and homeostasis, the mechanism of cilium construction, as well as progress in diagnosis and possible treatment of ciliopathies. The contributions to the cilia field of flagellated infectious eukaryotes and of systems biology were also presented.

19.
Development ; 141(20): 3966-77, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25294941

RESUMEN

Initially identified in DNA damage repair, ATM-interactor (ATMIN) further functions as a transcriptional regulator of lung morphogenesis. Here we analyse three mouse mutants, Atmin(gpg6/gpg6), Atmin(H210Q/H210Q) and Dynll1(GT/GT), revealing how ATMIN and its transcriptional target dynein light chain LC8-type 1 (DYNLL1) are required for normal lung morphogenesis and ciliogenesis. Expression screening of ciliogenic genes confirmed Dynll1 to be controlled by ATMIN and further revealed moderately altered expression of known intraflagellar transport (IFT) protein-encoding loci in Atmin mutant embryos. Significantly, Dynll1(GT/GT) embryonic cilia exhibited shortening and bulging, highly similar to the characterised retrograde IFT phenotype of Dync2h1. Depletion of ATMIN or DYNLL1 in cultured cells recapitulated the in vivo ciliogenesis phenotypes and expression of DYNLL1 or the related DYNLL2 rescued the effects of loss of ATMIN, demonstrating that ATMIN primarily promotes ciliogenesis by regulating Dynll1 expression. Furthermore, DYNLL1 as well as DYNLL2 localised to cilia in puncta, consistent with IFT particles, and physically interacted with WDR34, a mammalian homologue of the Chlamydomonas cytoplasmic dynein 2 intermediate chain that also localised to the cilium. This study extends the established Atmin-Dynll1 relationship into a developmental and a ciliary context, uncovering a novel series of interactions between DYNLL1, WDR34 and ATMIN. This identifies potential novel components of cytoplasmic dynein 2 and furthermore provides fresh insights into the molecular pathogenesis of human skeletal ciliopathies.


Asunto(s)
Cilios/fisiología , Regulación del Desarrollo de la Expresión Génica , Pulmón/embriología , Factores de Transcripción/fisiología , Animales , Chlamydomonas/metabolismo , Cilios/metabolismo , Dineínas Citoplasmáticas , Daño del ADN , Dineínas/metabolismo , Marcadores Genéticos , Células HEK293 , Proteínas Hedgehog/metabolismo , Humanos , Ratones , Mutación , Fenotipo , Transducción de Señal , Factores de Transcripción/metabolismo , Transcripción Genética
20.
Cilia ; 3: 8, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25136442
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...