Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nat Struct Mol Biol ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698207

RESUMEN

Vortioxetine (VTX) is a recently approved antidepressant that targets a variety of serotonin receptors. Here, we investigate the drug's molecular mechanism of operation at the serotonin 5-HT3 receptor (5-HT3R), which features two properties: VTX acts differently on rodent and human 5-HT3R, and VTX appears to suppress any subsequent response to agonists. Using a combination of cryo-EM, electrophysiology, voltage-clamp fluorometry and molecular dynamics, we show that VTX stabilizes a resting inhibited state of the mouse 5-HT3R and an agonist-bound-like state of human 5-HT3R, in line with the functional profile of the drug. We report four human 5-HT3R structures and show that the human receptor transmembrane domain is intrinsically fragile. We also explain the lack of recovery after VTX administration via a membrane partition mechanism.

3.
J Biol Chem ; 291(2): 652-7, 2016 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-26565027

RESUMEN

Tryptophan metabolites in the kynurenine pathway are up-regulated by pro-inflammatory cytokines or glucocorticoids, and are linked to anti-inflammatory and immunosuppressive activities. In addition, they are up-regulated in pathologies such as cancer, autoimmune diseases, and psychiatric disorders. The molecular mechanisms of how kynurenine pathway metabolites cause these effects are incompletely understood. On the other hand, pro-inflammatory cytokines also up-regulate the amounts of tetrahydrobiopterin (BH4), an enzyme cofactor essential for the synthesis of several neurotransmitter and nitric oxide species. Here we show that xanthurenic acid is a potent inhibitor of sepiapterin reductase (SPR), the final enzyme in de novo BH4 synthesis. The crystal structure of xanthurenic acid bound to the active site of SPR reveals why among all kynurenine pathway metabolites xanthurenic acid is the most potent SPR inhibitor. Our findings suggest that increased xanthurenic acid levels resulting from up-regulation of the kynurenine pathway could attenuate BH4 biosynthesis and BH4-dependent enzymatic reactions, linking two major metabolic pathways known to be highly up-regulated in inflammation.


Asunto(s)
Biopterinas/análogos & derivados , Quinurenina/metabolismo , Redes y Vías Metabólicas , Xanturenatos/metabolismo , Animales , Biopterinas/biosíntesis , Biopterinas/química , Calorimetría , Cristalografía por Rayos X , Humanos , Concentración 50 Inhibidora , Quinurenina/química , Ratones , Modelos Moleculares , Ratas , Resonancia por Plasmón de Superficie , Termodinámica
4.
Science ; 340(6135): 987-91, 2013 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-23704574

RESUMEN

The introduction of sulfa drugs for the chemotherapy of bacterial infections in 1935 revolutionized medicine. Although their mechanism of action is understood, the molecular bases for most of their side effects remain obscure. Here, we report that sulfamethoxazole and other sulfa drugs interfere with tetrahydrobiopterin biosynthesis through inhibition of sepiapterin reductase. Crystal structures of sepiapterin reductase with bound sulfa drugs reveal how structurally diverse sulfa drugs achieve specific inhibition of the enzyme. The effect of sulfa drugs on tetrahydrobiopterin-dependent neurotransmitter biosynthesis in cell-based assays provides a rationale for some of their central nervous system-related side effects, particularly in high-dose sulfamethoxazole therapy of Pneumocystis pneumonia. Our findings reveal an unexpected aspect of the pharmacology of sulfa drugs and might translate into their improved medical use.


Asunto(s)
Oxidorreductasas de Alcohol/antagonistas & inhibidores , Oxidorreductasas de Alcohol/química , Antiinfecciosos/farmacología , Biopterinas/análogos & derivados , Sulfametoxazol/farmacología , 5-Hidroxitriptófano/biosíntesis , Adulto , Antiinfecciosos/efectos adversos , Antiinfecciosos/uso terapéutico , Biopterinas/biosíntesis , Línea Celular , Sistema Nervioso Central/efectos de los fármacos , Cristalografía por Rayos X , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Levodopa/biosíntesis , NADP/química , Náusea/inducido químicamente , Neumonía por Pneumocystis/tratamiento farmacológico , Conformación Proteica , Relación Estructura-Actividad , Sulfametoxazol/efectos adversos , Sulfametoxazol/uso terapéutico , Combinación Trimetoprim y Sulfametoxazol/farmacología , Combinación Trimetoprim y Sulfametoxazol/uso terapéutico , Vómitos/inducido químicamente
5.
Chimia (Aarau) ; 65(9): 720-4, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22026187

RESUMEN

The identification of all protein targets of a given drug or bioactive molecule within the human body is a prerequisite for an understanding of its beneficial and deleterious activities. Current approaches to reveal protein targets often fail to reveal physiologically relevant interactions. Here we review a recently introduced yeast-based approach for the identification of the binding partners of small molecules. We discuss the advantages and limitations of the approach using the clinically approved drug sulfasalazine as an example.


Asunto(s)
Antiinflamatorios no Esteroideos , Descubrimiento de Drogas/métodos , Proteínas/metabolismo , Bibliotecas de Moléculas Pequeñas , Sulfasalazina , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/metabolismo , Antiinflamatorios no Esteroideos/farmacología , Biopterinas/análogos & derivados , Biopterinas/biosíntesis , Biotransformación , Descubrimiento de Drogas/tendencias , Estructura Molecular , Unión Proteica , Proteínas/genética , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Sulfasalazina/química , Sulfasalazina/metabolismo , Sulfasalazina/farmacología , Técnicas del Sistema de Dos Híbridos
6.
Nat Chem Biol ; 7(6): 375-83, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21499265

RESUMEN

We introduce an approach for detection of drug-protein interactions that combines a new yeast three-hybrid screening for identification of interactions with affinity chromatography for their unambiguous validation. We applied the methodology to the profiling of clinically approved drugs, resulting in the identification of previously known and unknown drug-protein interactions. In particular, we were able to identify off-targets for erlotinib and atorvastatin, as well as an enzyme target for the anti-inflammatory drug sulfasalazine. We demonstrate that sulfasalazine and its metabolites, sulfapyridine and mesalamine, are inhibitors of the enzyme catalyzing the final step in the biosynthesis of the cofactor tetrahydrobiopterin. The interference with tetrahydrobiopterin metabolism provides an explanation for some of the beneficial and deleterious properties of sulfasalazine and furthermore suggests new and improved therapies for the drug. This work thus establishes a powerful approach for drug profiling and provides new insights in the mechanism of action of clinically approved drugs.


Asunto(s)
Biopterinas/análogos & derivados , Saccharomyces cerevisiae/metabolismo , Sulfasalazina/farmacología , Técnicas del Sistema de Dos Híbridos , Antiinfecciosos , Antiinflamatorios no Esteroideos/farmacología , Biopterinas/antagonistas & inhibidores , Biopterinas/biosíntesis , Evaluación Preclínica de Medicamentos/métodos , Inhibidores Enzimáticos , Mesalamina , Métodos , Unión Proteica , Saccharomyces cerevisiae/efectos de los fármacos , Sulfapiridina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...