Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Alzheimers Dis ; 2023 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-37742650

RESUMEN

The degree to which non-human animals can be used to model Alzheimer's disease is a contentious issue, particularly as there is still widespread disagreement regarding the pathogenesis of this neurodegenerative dementia. The currently popular transgenic models are based on artificial expression of genes mutated in early onset forms of familial Alzheimer's disease (EOfAD). Uncertainty regarding the veracity of these models led us to focus on heterozygous, single mutations of endogenous genes (knock-in models) as these most closely resemble the genetic state of humans with EOfAD, and so incorporate the fewest assumptions regarding pathological mechanism. We have generated a number of lines of zebrafish bearing EOfAD-like and non-EOfAD-like mutations in genes equivalent to human PSEN1, PSEN2, and SORL1. To analyze the young adult brain transcriptomes of these mutants, we exploited the ability of zebrafish to produce very large families of simultaneous siblings composed of a variety of genotypes and raised in a uniform environment. This "intra-family" analysis strategy greatly reduced genetic and environmental "noise" thereby allowing detection of subtle changes in gene sets after bulk RNA sequencing of entire brains. Changes to oxidative phosphorylation were predicted for all EOfAD-like mutations in the three genes studied. Here we describe some of the analytical lessons learned in our program combining zebrafish genome editing with transcriptomics to understand the molecular pathologies of neurodegenerative disease.

2.
J Alzheimers Dis Rep ; 5(1): 395-404, 2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-34189411

RESUMEN

BACKGROUND: Mutations in PRESENILIN 2 (PSEN2) cause early onset familial Alzheimer's disease (EOfAD) but their mode of action remains elusive. One consistent observation for all PRESENILIN gene mutations causing EOfAD is that a transcript is produced with a reading frame terminated by the normal stop codon-the "reading frame preservation rule". Mutations that do not obey this rule do not cause the disease. The reasons for this are debated. OBJECTIVE: To predict cellular functions affected by heterozygosity for a frameshift, or a reading frame-preserving mutation in zebrafish psen2 using bioinformatic techniques. METHODS: A frameshift mutation (psen2 N140fs ) and a reading frame-preserving (in-frame) mutation (psen2 T141 _ L142delinsMISLISV ) were previously isolated during genome editing directed at the N140 codon of zebrafish psen2 (equivalent to N141 of human PSEN2). We mated a pair of fish heterozygous for each mutation to generate a family of siblings including wild type and heterozygous mutant genotypes. Transcriptomes from young adult (6 months) brains of these genotypes were analyzed. RESULTS: The in-frame mutation uniquely caused subtle, but statistically significant, changes to expression of genes involved in oxidative phosphorylation, long-term potentiation and the cell cycle. The frameshift mutation uniquely affected genes involved in Notch and MAPK signaling, extracellular matrix receptor interactions and focal adhesion. Both mutations affected ribosomal protein gene expression but in opposite directions. CONCLUSION: A frameshift and an in-frame mutation at the same position in zebrafish psen2 cause discrete effects. Changes in oxidative phosphorylation, long-term potentiation and the cell cycle may promote EOfAD pathogenesis in humans.

3.
J Alzheimers Dis ; 79(3): 1105-1119, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33386808

RESUMEN

BACKGROUND: The early cellular stresses leading to Alzheimer's disease (AD) remain poorly understood because we cannot access living, asymptomatic human AD brains for detailed molecular analyses. Sortilin-related receptor 1 (SORL1) encodes a multi-domain receptor protein genetically associated with both rare, early-onset familial AD (EOfAD) and common, sporadic, late-onset AD (LOAD). SORL1 protein has been shown to act in the trafficking of the amyloid ß A4 precursor protein (AßPP) that is proteolysed to form one of the pathological hallmarks of AD, amyloid-ß (Aß) peptide. However, other functions of SORL1 in AD are less well understood. OBJECTIVE: To investigate the effects of heterozygosity for an EOfAD-like mutation in SORL1 on the brain transcriptome of young-adult mutation carriers using zebrafish as a model organism. METHODS: We performed targeted mutagenesis to generate an EOfAD-like mutation in the zebrafish orthologue of SORL1 and performed RNA-sequencing on mRNA isolated from the young adult brains of siblings in a family of fish either wild type (non-mutant) or heterozygous for the EOfAD-like mutation. RESULTS: We identified subtle differences in gene expression indicating changes in mitochondrial and ribosomal function in the mutant fish. These changes appear to be independent of changes in mitochondrial content or the expression of AßPP-related proteins in zebrafish. CONCLUSION: These findings provided evidence supporting that EOfAD mutations in SORL1 affect mitochondrial and ribosomal function and provide the basis for future investigation elucidating the nature of these effects.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Proteínas Relacionadas con Receptor de LDL/genética , Mitocondrias/metabolismo , Ribosomas/metabolismo , Proteínas de Pez Cebra/genética , Enfermedad de Alzheimer/genética , Animales , Western Blotting , Perfilación de la Expresión Génica , Mitocondrias/genética , Mutación/genética , Reacción en Cadena de la Polimerasa , Ribosomas/genética , Pez Cebra
4.
Mol Brain ; 13(1): 142, 2020 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-33076949

RESUMEN

To prevent or delay the onset of Alzheimer's disease (AD), we must understand its molecular basis. The great majority of AD cases arise sporadically with a late onset after 65 years of age (LOAD). However, rare familial cases of AD can occur due to dominant mutations in a small number of genes that cause an early onset prior to 65 years of age (EOfAD). As EOfAD and LOAD share similar pathologies and disease progression, analysis of EOfAD genetic models may give insight into both subtypes of AD. Sortilin-related receptor 1 (SORL1) is genetically associated with both EOfAD and LOAD and provides a unique opportunity to investigate the relationships between both forms of AD. Currently, the role of SORL1 mutations in AD pathogenesis is unclear. To understand the molecular consequences of SORL1 mutation, we performed targeted mutagenesis of the orthologous gene in zebrafish. We generated an EOfAD-like mutation, V1482Afs, and a putatively null mutation, to investigate whether EOfAD-like mutations in sorl1 display haploinsufficiency by acting through loss-of-function mechanisms. We performed mRNA-sequencing on whole brains, comparing wild type fish with their siblings heterozygous for EOfAD-like or putatively loss-of-function mutations in sorl1, or transheterozygous for these mutations. Differential gene expression analysis identified a small number of differentially expressed genes due to the sorl1 genotypes. We also performed enrichment analysis on all detectable genes to obtain a more complete view on changes to gene expression by performing three methods of gene set enrichment analysis, then calculated an overall significance value using the harmonic mean p-value. This identified subtle effects on expression of genes involved in energy production, mRNA translation and mTORC1 signalling in both the EOfAD-like and null mutant brains, implying that these effects are due to sorl1 haploinsufficiency. Surprisingly, we also observed changes to expression of genes occurring only in the EOfAD-mutation carrier brains, suggesting gain-of-function effects. Transheterozygosity for the EOfAD-like and null mutations (i.e. lacking wild type sorl1), caused apparent effects on iron homeostasis and other transcriptome changes distinct from the single-mutation heterozygous fish. Our results provide insight into the possible early brain molecular effects of an EOfAD mutation in human SORL1. Differential effects of heterozygosity and complete loss of normal SORL1 expression are revealed.


Asunto(s)
Enfermedad de Alzheimer/genética , Encéfalo/metabolismo , Perfilación de la Expresión Génica , Homeostasis , Hierro/metabolismo , Proteínas Relacionadas con Receptor de LDL/genética , Mitocondrias/metabolismo , Mutación/genética , Proteínas de Pez Cebra/genética , Alelos , Enfermedad de Alzheimer/patología , Animales , Secuencia de Bases , Encéfalo/patología , Cruzamiento , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Heterocigoto , Degradación de ARNm Mediada por Codón sin Sentido/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Pez Cebra/genética
5.
PLoS One ; 15(7): e0232559, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32658922

RESUMEN

PRESENILIN 2 (PSEN2) is one of the genes mutated in early onset familial Alzheimer's disease (EOfAD). PSEN2 shares significant amino acid sequence identity with another EOfAD-related gene PRESENILIN 1 (PSEN1), and partial functional redundancy is seen between these two genes. However, the complete range of functions of PSEN1 and PSEN2 is not yet understood. In this study, we performed targeted mutagenesis of the zebrafish psen2 gene to generate a premature termination codon close downstream of the translation start with the intention of creating a null mutation. Homozygotes for this mutation, psen2S4Ter, are viable and fertile, and adults do not show any gross psen2-dependent pigmentation defects, arguing against significant loss of γ-secretase activity. Also, assessment of the numbers of Dorsal Longitudinal Ascending (DoLA) interneurons that are responsive to psen2 but not psen1 activity during embryogenesis did not reveal decreased psen2 function. Transcripts containing the S4Ter mutation show no evidence of destabilization by nonsense-mediated decay. Forced expression in zebrafish embryos of fusions of psen2S4Ter 5' mRNA sequences with sequence encoding enhanced green fluorescent protein (EGFP) indicated that the psen2S4Ter mutation permits utilization of cryptic, novel downstream translation start codons. These likely initiate translation of N-terminally truncated Psen2 proteins lacking late endosomal/lysosomal localization sequences and that obey the "reading frame preservation rule" of PRESENILIN EOfAD mutations. Transcriptome analysis of entire brains from a 6-month-old family of wild type, heterozygous and homozygous psen2S4Ter female siblings revealed profoundly dominant effects on gene expression likely indicating changes in ribosomal, mitochondrial, and anion transport functions.


Asunto(s)
Codón de Terminación/genética , Perfilación de la Expresión Génica , Mitocondrias/genética , Mutación , Presenilina-2/genética , Ribosomas/genética , Proteínas de Pez Cebra/genética , Alelos , Animales , Recuento de Células , Homocigoto , Hipoxia/genética , Neuronas/citología , Estabilidad del ARN/genética , Pez Cebra/embriología , Pez Cebra/genética
6.
Placenta ; 88: 8-11, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31569011

RESUMEN

The purity of tissue samples can affect the accuracy and utility of DNA methylation array analyses. This is particularly important for the placenta which is globally hypomethylated compared to other tissues. Placental villous tissue from early pregnancy terminations can be difficult to separate from non-villous tissue, resulting in potentially inaccurate results. We used several methods to identify mixed placenta samples using DNA methylation array datasets from our laboratory and those contained in the NCBI GEO database, highlighting the importance of determining sample purity during quality control processes.


Asunto(s)
Metilación de ADN , Análisis por Micromatrices , Placenta/metabolismo , Femenino , Humanos , Placenta/química , Embarazo , Análisis de Componente Principal , Control de Calidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...