Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ecol Appl ; 33(2): e2762, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36218186

RESUMEN

Monitoring trends in animal populations in arid regions is challenging due to remoteness and low population densities. However, detecting species' tracks or signs is an effective survey technique for monitoring population trends across large spatial and temporal scales. In this study, we developed a simulation framework to evaluate the performance of alternative track-based monitoring designs at detecting change in species distributions in arid Australia. We collated presence-absence records from 550 2-ha track-based plots for 11 vertebrates over 13 years and fitted ensemble species distribution models to predict occupancy in 2018. We simulated plausible changes in species' distributions over the next 15 years and, with estimates of detectability, simulated monitoring to evaluate the statistical power of three alternative monitoring scenarios: (1) where surveys were restricted to existing 2-ha plots, (2) where surveys were optimized to target all species equally, and (3) where surveys were optimized to target two species of conservation concern. Across all monitoring designs and scenarios, we found that power was higher when detecting increasing occupancy trends compared to decreasing trends owing to the relatively low levels of initial occupancy. Our results suggest that surveying 200 of the existing plots annually (with a small subset resurveyed twice within a year) will have at least an 80% chance of detecting 30% declines in occupancy for four of the five invasive species modeled and one of the six native species. This increased to 10 of the 11 species assuming larger (50%) declines. When plots were positioned to target all species equally, power improved slightly for most compared to the existing survey network. When plots were positioned to target two species of conservation concern (crest-tailed mulgara and dusky hopping mouse), power to detect 30% declines increased by 29% and 31% for these species, respectively, at the cost of reduced power for the remaining species. The effect of varying survey frequency depended on its trade-off with the number of sites sampled and requires further consideration. Nonetheless, our research suggests that track-based surveying is an effective and logistically feasible approach to monitoring broad-scale occupancy trends in desert species with both widespread and restricted distributions.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Animales , Ratones , Conservación de los Recursos Naturales/métodos , Dinámica Poblacional , Vertebrados , Australia
2.
Conserv Biol ; 32(1): 216-228, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28981964

RESUMEN

Understanding and conserving mobile species presents complex challenges, especially for animals in stochastic or changing environments. Nomadic waterbirds must locate temporary water in arid biomes where rainfall is highly unpredictable in space and time. To achieve this they need to travel over vast spatial scales and time arrival to exploit pulses in food resources. How they achieve this is an enduring mystery.  We investigated these challenges in the colonial-nesting Banded Stilt (Cladorhynchus leucocephalus), a nomadic shorebird of conservation concern. Hitherto, Banded Stilts were hypothesized to have only 1-2 chances to breed during their long lifetime, when flooding rain fills desert salt lakes, triggering mass-hatching of brine shrimp. Over 6 years, we satellite tagged 57 individuals, conducted 21 aerial surveys to detect nesting colonies on 14 Australian desert salt lakes, and analyzed 3 decades of Landsat and MODIS satellite imagery to quantify salt-lake flood frequency and extent. Within days of distant inland rainfall, Banded Stilts flew 1,000-2,000 km to reach flooded salt lakes. On arrival, females laid over half their body weight in eggs. We detected nesting episodes across the species' range at 7 times the frequency reported during the previous 80 years. Nesting colonies of thousands formed following minor floods, yet most were subsequently abandoned when the water rapidly evaporated prior to egg hatching. Satellite imagery revealed twice as many flood events sufficient for breeding-colony initiation as recorded colonies, suggesting that nesting at remote sites has been underdetected. Individuals took risk on uncertain breeding opportunities by responding to frequent minor flood events between infrequent extensive flooding, exemplifying the extreme adaptability and trade-offs of species exploiting unstable environments. The conservation challenges of nest predation by overabundant native gulls and anthropogenic modifications to salt lakes filling frequencies require investigation, as do the physiological and navigational mechanisms that enable such extreme strategies.


Asunto(s)
Aves , Conservación de los Recursos Naturales , Lagos , Animales , Australia , Cruzamiento , Femenino
3.
Conserv Biol ; 30(4): 774-82, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26852773

RESUMEN

Funding for species conservation is insufficient to meet the current challenges facing global biodiversity, yet many programs use expensive single-species recovery actions and neglect broader management that addresses threatening processes. Arid Australia has the world's worst modern mammalian extinction record, largely attributable to competition from introduced herbivores, particularly European rabbits (Oryctolagus cuniculus) and predation by feral cats (Felis catus) and foxes (Vulpes vulpes). The biological control agent rabbit hemorrhagic disease virus (RHDV) was introduced to Australia in 1995 and resulted in dramatic, widespread rabbit suppression. We compared the area of occupancy and extent of occurrence of 4 extant species of small mammals before and after RHDV outbreak, relative to rainfall, sampling effort, and rabbit and predator populations. Despite low rainfall during the first 14 years after RHDV, 2 native rodents listed by the International Union for Conservation of Nature (IUCN), the dusky hopping-mouse (Notomys fuscus) and plains mouse (Pseudomys australis), increased their extent of occurrence by 241-365%. A threatened marsupial micropredator, the crest-tailed mulgara (Dasycercus cristicauda), underwent a 70-fold increase in extent of occurrence and a 20-fold increase in area of occupancy. Both bottom-up and top-down trophic effects were attributed to RHDV, namely decreased competition for food resources and declines in rabbit-dependent predators. Based on these sustained increases, these 3 previously threatened species now qualify for threat-category downgrading on the IUCN Red List. These recoveries are on a scale rarely documented in mammals and give impetus to programs aimed at targeted use of RHDV in Australia, rather than simply employing top-down threat-based management of arid ecosystems. Conservation programs that take big-picture approaches to addressing threatening processes over large spatial scales should be prioritized to maximize return from scarce conservation funding. Further, these should be coupled with long-term ecological monitoring, a critical tool in detecting and understanding complex ecosystem change.


Asunto(s)
Conservación de los Recursos Naturales , Especies en Peligro de Extinción , Mamíferos , Animales , Australia , Biodiversidad , Gatos , Ecosistema , Ratones , Conducta Predatoria , Conejos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA