Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Toxins (Basel) ; 16(3)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38535801

RESUMEN

Ribosome inactivating proteins (RIPs) are specific N-ß-glycosylases that are well-characterized in plants. Their enzymatic action is to damage ribosomes, thereby blocking protein translation. Recently, several research groups have been working on the screening for these toxins in edible plants to facilitate the use of RIPs as biotechnological tools and biopesticides and to overcome public prejudice. Here, four novel monomeric (type 1) RIPs have been isolated from the seeds of Atriplex hortensis L. var. rubra, which is commonly known as edible red mountain spinach. These enzymes, named hortensins 1, 2, 4, and 5, are able to release the ß-fragment and, like many other RIPs, adenines from salmon sperm DNA, thus, acting as polynucleotide:adenosine glycosidases. Structurally, hortensins have a different molecular weight and are purified with different yields (hortensin 1, ~29.5 kDa, 0.28 mg per 100 g; hortensin 2, ~29 kDa, 0.29 mg per 100 g; hortensin 4, ~28.5 kDa, 0.71 mg per 100 g; and hortensin 5, ~30 kDa, 0.65 mg per 100 g); only hortensins 2 and 4 are glycosylated. Furthermore, the major isoforms (hortensins 4 and 5) are cytotoxic toward human continuous glioblastoma U87MG cell line. In addition, the morphological change in U87MG cells in the presence of these toxins is indicative of cell death triggered by the apoptotic pathway, as revealed by nuclear DNA fragmentation (TUNEL assay).


Asunto(s)
Atriplex , Proteínas Inactivadoras de Ribosomas Tipo 1 , Semillas , Humanos , Glioblastoma , Ribosomas , Proteínas de Plantas , Línea Celular Tumoral
2.
Food Res Int ; 173(Pt 1): 113298, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37803610

RESUMEN

Consumer attention to functional foods containing probiotics is growing because of their positive effects on human health. Kefir is a fermented milk beverage produced by bacteria and yeasts. Given the emerging kefir market, there is an increasing demand for new methodologies to certify product claims such as colony-forming units/g and bacterial taxa. MALDI-TOF MS proved to be useful for the detection/identification of bacteria in clinical diagnostics and agri-food applications. Recently, LC-MS/MS approaches have also been applied to the identification of proteins and proteotypic peptides of lactic acid bacteria in fermented food matrices. Here, we developed an innovative nanoLC-ESI-MS/MS-based methodology for profiling lactic acid bacteria in commercial and artisanal milk kefir products as well as in kefir grains at the genus, species and subspecies level. The proposed workflow enables the authentication of kefir label claims declaring the presence of probiotic starters. An overview of the composition of lactic acid bacteria was also obtained for unlabelled kefir highlighting, for the first time, the great potential of LC-MS/MS as a sensitive tool to assess the authenticity of fermented foods.


Asunto(s)
Kéfir , Lactobacillales , Humanos , Bacterias , Cromatografía Liquida , Kéfir/microbiología , Lactobacillales/metabolismo , Leche/microbiología , Espectrometría de Masas en Tándem
3.
Int J Mol Sci ; 24(19)2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37833883

RESUMEN

Ribotoxin-like proteins (RL-Ps) are specific ribonucleases found in mushrooms that are able to cleave a single phosphodiester bond located in the sarcin-ricin loop (SRL) of the large rRNA. The cleaved SRL interacts differently with some ribosomal proteins (P-stalk). This action blocks protein synthesis because the damaged ribosomes are unable to interact with elongation factors. Here, the amino acid sequences of eryngitin 3 and 4, RL-Ps isolated from Pleurotus eryngii fruiting bodies, were determined to (i) obtain structural information on this specific ribonuclease family from edible mushrooms and (ii) explore the structural determinants which justify their different biological and antipathogenic activities. Indeed, eryngitin 3 exhibited higher toxicity with respect to eryngitin 4 against tumoral cell lines and model fungi. Structurally, eryngitin 3 and 4 consist of 132 amino acids, most of them identical and exhibiting a single free cysteinyl residue. The amino acidic differences between the two toxins are (i) an additional phenylalanyl residue at the N-terminus of eryngitin 3, not retrieved in eryngitin 4, and (ii) an additional arginyl residue at the C-terminus of eryngitin 4, not retrieved in eryngitin 3. The 3D models of eryngitins show slight differences at the N- and C-terminal regions. In particular, the positive electrostatic surface at the C-terminal of eryngitin 4 is due to the additional arginyl residue not retrieved in eryngitin 3. This additional positive charge could interfere with the binding to the SRL (substrate) or with some ribosomal proteins (P-stalk structure) during substrate recognition.


Asunto(s)
Agaricales , Ascomicetos , Pleurotus , Ricina , Endorribonucleasas/metabolismo , Proteínas Fúngicas/metabolismo , Pleurotus/metabolismo , Ribonucleasas/química , Agaricales/química , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/análisis , Ricina/metabolismo , Ascomicetos/metabolismo , Cuerpos Fructíferos de los Hongos/química
4.
Int J Mol Sci ; 24(19)2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37834166

RESUMEN

Proteins of the MucR/Ros family play a crucial role in bacterial infection or symbiosis with eukaryotic hosts. MucR from Sinorhizobium meliloti plays a regulatory role in establishing symbiosis with the host plant, both dependent and independent of Quorum Sensing. Here, we report the first characterization of MucR isolated from Sinorhizobium meliloti by mass spectrometry and demonstrate that this protein forms higher-order oligomers in its native condition of expression by SEC-MALS. We show that MucR purified from Sinorhizobium meliloti can bind DNA and recognize the region upstream of the ndvA gene in EMSA, revealing that this gene is a direct target of MucR. Although MucR DNA binding activity was already described, a detailed characterization of Sinorhizobium meliloti DNA targets has never been reported. We, thus, analyze sequences recognized by MucR in the rem gene promoter, showing that this protein recognizes AT-rich sequences and does not require a consensus sequence to bind DNA. Furthermore, we investigate the dependence of MucR DNA binding on the length of DNA targets. Taken together, our studies establish MucR from Sinorhizobium meliloti as a member of a new family of Histone-like Nucleoid Structuring (H-NS) proteins, thus explaining the multifaceted role of this protein in many species of alpha-proteobacteria.


Asunto(s)
Proteínas Represoras , Sinorhizobium meliloti , Proteínas Represoras/genética , Sinorhizobium meliloti/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Factores de Transcripción/metabolismo , ADN/genética , ADN/metabolismo , Simbiosis , Regulación Bacteriana de la Expresión Génica
5.
Biomolecules ; 13(2)2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36830606

RESUMEN

White button mushroom (Agaricus bisporus (J.E. Lange) Imbach) is one of the widely consumed edible mushrooms. Indeed, A. bisporus fruiting bodies are a rich source of nutrients and bioactive molecules. In addition, several enzymes with biotechnological applications are found in A. bisporus (e.g., enzymes for lignocellulose degradation). Here, a novel ribotoxin-like protein (RL-P) from the edible mushroom A. bisporus was purified and characterized. This RL-P, named bisporitin, is a monomeric protein (17-kDa) exhibiting specific ribonucleolytic activity by releasing the α-fragment (hallmark of RL-Ps) when incubated with rabbit ribosomes. In addition, bisporitin shows magnesium-dependent endonuclease activity and displays a similar far-UV CD spectrum as ageritin, the prototype of RL-Ps, isolated from Cyclocybe aegerita fruiting bodies. Interestingly, bisporitin is the first member of RL-Ps to have noticeably lower thermal stability (Tm = 48.59 ± 0.98 °C) compared to RL-Ps isolated in other mushrooms (Tm > 70 °C). Finally, this protein is only partially hydrolyzed in an in vitro digestive system and does not produce adverse growing effects on eukaryotic cell lines. This evidence paves the way for future investigations on possible bioactivities of this RL-P in the digestive system.


Asunto(s)
Agaricus , Animales , Conejos , Ribosomas/metabolismo
6.
Int J Mol Sci ; 23(24)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36555507

RESUMEN

Pharma-grade extractive chondroitin sulfate (CS) is widely used for osteoarthritis (OA) treatment. Recently, unsulfated biofermentative chondroitin (BC) proved positive effects in OA in vitro model. This study, based on primary pathological human synoviocytes, aimed to analyze, by a multiplex assay, a panel of OA-related biomarkers in response to short-term treatments with bovine (CSb), pig (CSp) and fish (CSf) chondroitins, in comparison to BC. As expected, all samples had anti-inflammatory properties, however CSb, CSf and especially BC affected more cytokines and chemokines. Based on these results and molecular weight similarity, CSf and BC were selected to further explore the synoviocytes' response. In fact, Western blot analyses showed CSf and BC were comparable, downregulating OA-related biomarkers such as the proteins mTOR, NF-kB, PTX-3 and COMP-2. Proteomic analyses, performed by applying a nano-LC-MS/MS TMT isobaric labelling-based approach, displayed the modulation of both common and distinct molecules to chondroitin treatments. Thus, CSf and BC modulated the biological mediators involved in the inflammation cascade, matrix degradation/remodeling, glycosaminoglycans' synthesis and cellular homeostasis. This study helps in shedding light on different molecular mechanisms related to OA disease that may be potentially affected not only by animal-source chondroitin sulfate but also by unsulfated biofermentative chondroitin.


Asunto(s)
Osteoartritis , Sinoviocitos , Humanos , Animales , Bovinos , Porcinos , Sulfatos de Condroitina/farmacología , Sulfatos de Condroitina/metabolismo , Sinoviocitos/metabolismo , Sulfatos , Proteómica , Espectrometría de Masas en Tándem , Osteoartritis/metabolismo , Biomarcadores
7.
Int J Mol Sci ; 23(7)2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35409070

RESUMEN

An unprecedented effort to tackle the ongoing COVID-19 pandemic has characterized the activity of the global scientific community over the last two years. Hundreds of published studies have focused on the comprehension of the immune response to the virus and on the definition of the functional role of SARS-CoV-2 proteins. Proteins containing zinc fingers, both belonging to SARS-CoV-2 or to the host, play critical roles in COVID-19 participating in antiviral defenses and regulation of viral life cycle. Differentially expressed zinc finger proteins and their distinct activities could thus be important in determining the severity of the disease and represent important targets for drug development. Therefore, we here review the mechanisms of action of host and viral zinc finger proteins in COVID-19 as a contribution to the comprehension of the disease and also highlight strategies for therapeutic developments.


Asunto(s)
COVID-19 , Antivirales/farmacología , Humanos , Pandemias , SARS-CoV-2 , Zinc
8.
Int J Mol Sci ; 23(2)2022 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-35054864

RESUMEN

Penicillium digitatum is a widespread pathogen responsible for the postharvest decay of citrus, one of the most economically important crops worldwide. Currently, chemical fungicides are still the main strategy to control the green mould disease caused by the fungus. However, the increasing selection and proliferation of fungicide-resistant strains require more efforts to explore new alternatives acting via new or unexplored mechanisms for postharvest disease management. To date, several non-chemical compounds have been investigated for the control of fungal pathogens. In this scenario, understanding the molecular determinants underlying P. digitatum's response to biological and chemical antifungals may help in the development of safer and more effective non-chemical control methods. In this work, a proteomic approach based on isobaric labelling and a nanoLC tandem mass spectrometry approach was used to investigate molecular changes associated with P. digitatum's response to treatments with α-sarcin and beetin 27 (BE27), two proteins endowed with antifungal activity. The outcomes of treatments with these biological agents were then compared with those triggered by the commonly used chemical fungicide thiabendazole (TBZ). Our results showed that differentially expressed proteins mainly include cell wall-degrading enzymes, proteins involved in stress response, antioxidant and detoxification mechanisms and metabolic processes such as thiamine biosynthesis. Interestingly, specific modulations in response to protein toxins treatments were observed for a subset of proteins. Deciphering the inhibitory mechanisms of biofungicides and chemical compounds, together with understanding their effects on the fungal physiology, will provide a new direction for improving the efficacy of novel antifungal formulations and developing new control strategies.


Asunto(s)
Antifúngicos/química , Antifúngicos/farmacología , Penicillium/efectos de los fármacos , Espectrometría de Masas en Tándem , Antioxidantes/metabolismo , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Cromatografía Liquida , Endorribonucleasas/farmacología , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/farmacología , Pruebas de Sensibilidad Microbiana , Penicillium/crecimiento & desarrollo , Proteómica , Tiabendazol/farmacología
9.
Food Chem ; 365: 130456, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34243122

RESUMEN

The ever-growing use of mass spectrometry (MS) methodologies in food authentication and traceability originates from their unrivalled specificity, accuracy and sensitivity. Such features are crucial for setting up analytical strategies for detecting food frauds and adulterations by monitoring selected components within food matrices. Among MS approaches, protein and peptide profiling has become increasingly consolidated. This review explores the current knowledge on recent MS techniques using protein and peptide biomarkers for assessing food traceability and authenticity, with a specific focus on their use for unmasking potential frauds and adulterations. We provide a survey of the current state-of-the-art instrumentation including the most reliable and sensitive acquisition modes highlighting advantages and limitations. Finally, we summarize the recent applications of MS to protein/peptide analyses in food matrices and examine their potential in ensuring the quality of agro-food products.


Asunto(s)
Péptidos , Proteínas , Contaminación de Medicamentos , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
10.
Toxins (Basel) ; 13(4)2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33917246

RESUMEN

Ageritin is a specific ribonuclease, extracted from the edible mushroom Cyclocybe aegerita (synonym Agrocybe aegerita), which cleaves a single phosphodiester bond located within the universally conserved alpha-sarcin loop (SRL) of 23-28S rRNAs. This cleavage leads to the inhibition of protein biosynthesis, followed by cellular death through apoptosis. The structural and enzymatic properties show that Ageritin is the prototype of a novel specific ribonucleases family named 'ribotoxin-like proteins', recently found in fruiting bodies of other edible basidiomycetes mushrooms (e.g., Ostreatin from Pleurotus ostreatus, Edulitins from Boletus edulis, and Gambositin from Calocybe gambosa). Although the putative role of this toxin, present in high amount in fruiting body (>2.5 mg per 100 g) of C. aegerita, is unknown, its antifungal and insecticidal actions strongly support a role in defense mechanisms. Thus, in this review, we focus on structural, biological, antipathogenic, and enzymatic characteristics of this ribotoxin-like protein. We also highlight its biological relevance and potential biotechnological applications in agriculture as a bio-pesticide and in biomedicine as a therapeutic and diagnostic agent.


Asunto(s)
Agaricales/enzimología , Cuerpos Fructíferos de los Hongos/enzimología , Micotoxinas/metabolismo , Ribonucleasas/metabolismo , Agaricales/genética , Animales , Antifúngicos/farmacología , Antineoplásicos/farmacología , Antivirales/farmacología , Agentes de Control Biológico/farmacología , Cuerpos Fructíferos de los Hongos/genética , Humanos , Micotoxinas/genética , Micotoxinas/farmacología , Filogenia , Conformación Proteica , Ribonucleasas/genética , Ribonucleasas/farmacología , Relación Estructura-Actividad
11.
Int J Biol Macromol ; 168: 67-76, 2021 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-33301849

RESUMEN

ZBTB2 is a protein belonging to the BTB/POZ zinc-finger family whose members typically contain a BTB/POZ domain at the N-terminus and several zinc-finger domains at the C-terminus. Studies have been carried out to disclose the role of ZBTB2 in cell proliferation, in human cancers and in regulating DNA methylation. Moreover, ZBTB2 has been also described as an ARF, p53 and p21 gene repressor as well as an activator of genes modulating pluripotency. In this scenario, ZBTB2 seems to play many functions likely associated with other proteins. Here we report a picture of the ZBTB2 protein partners in U87MG cell line, identified by high-resolution mass spectrometry (MS) that highlights the interplay between ZBTB2 and chromatin remodeling multiprotein complexes. In particular, our analysis reveals the presence, as ZBTB2 candidate interactors, of SMARCA5 and BAZ1B components of the chromatin remodeling complex WICH and PBRM1, a subunit of the SWI/SNF complex. Intriguingly, we identified all the subunits of the NuRD complex among the ZBTB2 interactors. By co-immunoprecipitation experiments and ChIP-seq analysis we definitely identify ZBTB2 as a new partner of the NuRD complex.


Asunto(s)
Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Adenosina Trifosfatasas/metabolismo , Línea Celular Tumoral , Cromatina/genética , Proteínas Cromosómicas no Histona/metabolismo , ADN/genética , Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Glioblastoma/metabolismo , Humanos , Inmunoprecipitación/métodos , Espectrometría de Masas/métodos , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/fisiología , Proteínas Nucleares/genética , Nucleosomas/genética , Unión Proteica/genética , Proteínas Represoras/fisiología , Factores de Transcripción/metabolismo , Dedos de Zinc/fisiología
12.
Sci Rep ; 10(1): 21067, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33273582

RESUMEN

Downhill folding has been defined as a unique thermodynamic process involving a conformations ensemble that progressively loses structure with the decrease of protein stability. Downhill folders are estimated to be rather rare in nature as they miss an energetically substantial folding barrier that can protect against aggregation and proteolysis. We have previously demonstrated that the prokaryotic zinc finger protein Ros87 shows a bipartite folding/unfolding process in which a metal binding intermediate converts to the native structure through a delicate barrier-less downhill transition. Significant variation in folding scenarios can be detected within protein families with high sequence identity and very similar folds and for the same sequence by varying conditions. For this reason, we here show, by means of DSC, CD and NMR, that also in different pH and ionic strength conditions Ros87 retains its partly downhill folding scenario demonstrating that, at least in metallo-proteins, the downhill mechanism can be found under a much wider range of conditions and coupled to other different transitions. We also show that mutations of Ros87 zinc coordination sphere produces a different folding scenario demonstrating that the organization of the metal ion core is determinant in the folding process of this family of proteins.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Pliegue de Proteína , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Desplegamiento Proteico , Termodinámica
13.
Int J Mol Sci ; 21(23)2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33255744

RESUMEN

The transcription factor CCCTC-binding factor (CTCF) modulates pleiotropic functions mostly related to gene expression regulation. The role of CTCF in large scale genome organization is also well established. A unifying model to explain relationships among many CTCF-mediated activities involves direct or indirect interactions with numerous protein cofactors recruited to specific binding sites. The co-association of CTCF with other architectural proteins such as cohesin, chromodomain helicases, and BRG1, further supports the interplay between master regulators of mammalian genome folding. Here, we report a comprehensive LC-MS/MS mapping of the components of the switch/sucrose nonfermentable (SWI/SNF) chromatin remodeling complex co-associated with CTCF including subunits belonging to the core, signature, and ATPase modules. We further show that the localization patterns of representative SWI/SNF members significantly overlap with CTCF sites on transcriptionally active chromatin regions. Moreover, we provide evidence of a direct binding of the BRK-BRG1 domain to the zinc finger motifs 4-8 of CTCF, thus, suggesting that these domains mediate the interaction of CTCF with the SWI/SNF complex. These findings provide an updated view of the cooperative nature between CTCF and the SWI/SNF ATP-dependent chromatin remodeling complexes, an important step for understanding how these architectural proteins collaborate to shape the genome.


Asunto(s)
Factor de Unión a CCCTC/genética , Ensamble y Desensamble de Cromatina/genética , Proteínas Cromosómicas no Histona/genética , ADN Helicasas/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética , Dedos de Zinc/genética , Adenosina Trifosfatasas/genética , Sitios de Unión/genética , Proteínas de Ciclo Celular/genética , Regulación de la Expresión Génica/genética , Genoma Humano/genética , Humanos , Complejos Multiproteicos/genética , Mapas de Interacción de Proteínas/genética , Espectrometría de Masas en Tándem , Cohesinas
14.
Sci Rep ; 10(1): 9283, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32518326

RESUMEN

Ros/MucR is a widespread family of bacterial zinc-finger (ZF) containing proteins that integrate multiple functions such as virulence, symbiosis and/or cell cycle transcription. NMR solution structure of Ros DNA-binding domain (region 56-142, i.e. Ros87) has been solved by our group and shows that the prokaryotic ZF domain shows interesting structural and functional features that differentiate it from its eukaryotic counterpart as it folds in a significantly larger zinc-binding globular domain. We have recently proposed a novel functional model for this family of proteins suggesting that they may act as H-NS-'like' gene silencers. Indeed, the N-terminal region of this family of proteins appears to be responsible for the formation of functional oligomers. No structural characterization of the Ros N-terminal domain (region 1-55) is available to date, mainly because of serious solubility problems of the full-length protein. Here we report the first structural characterization of the N-terminal domain of the prokaryotic ZF family examining by means of MD and NMR the structural preferences of the full-length Ros protein from Agrobacterium tumefaciens.


Asunto(s)
Agrobacterium tumefaciens/metabolismo , Proteínas de Unión al ADN/genética , Dominios Proteicos , Estructura Secundaria de Proteína/genética , Dedos de Zinc/genética , Agrobacterium tumefaciens/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Proteínas de Unión al ADN/metabolismo , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular
15.
Biomolecules ; 10(5)2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32438765

RESUMEN

The protein MucR from Brucella abortus has been described as a transcriptional regulator of many virulence genes. It is a member of the Ros/MucR family comprising proteins that control the expression of genes important for the successful interaction of α-proteobacteria with their eukaryotic hosts. Despite clear evidence of the role of MucR in repressing virulence genes, no study has been carried out so far demonstrating the direct interaction of this protein with the promoter of its target gene babR encoding a LuxR-like regulator repressing virB genes. In this study, we show for the first time the ability of MucR to bind the promoter of babR in electrophoretic mobility shift assays demonstrating a direct role of MucR in repressing this gene. Furthermore, we demonstrate that MucR can bind the virB gene promoter. Analyses by RT-qPCR showed no significant differences in the expression level of virB genes in Brucella abortus CC092 lacking MucR compared to the wild-type Brucella abortus strain, indicating that MucR binding to the virB promoter has little impact on virB gene expression in B. abortus 2308. The MucR modality to bind the two promoters analyzed supports our previous hypothesis that this is a histone-like protein never found before in Brucella.


Asunto(s)
Proteínas Bacterianas/genética , Brucella abortus/genética , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Factores de Virulencia/genética , Proteínas Bacterianas/metabolismo , Brucella abortus/metabolismo , Regulación Bacteriana de la Expresión Génica , Unión Proteica , Factores de Transcripción/metabolismo , Factores de Virulencia/metabolismo
16.
Int J Mol Sci ; 21(11)2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-32466468

RESUMEN

Symptomatic slow-acting drugs (SYSADOA) are increasingly used as effective therapies for osteoarthritis, representing an attractive alternative to analgesics or non-steroidal anti-inflammatory drugs to relieve disease symptoms. Pharmaceutical preparations of chondroitin sulfate, derived from animal sources, alone or in combination with glucosamine sulfate, are widely recognized for their beneficial effect on osteoarthritis treatment. A growing interest has also been devoted to understanding the molecular mechanisms modulated by SYSADOA using -omic strategies, most of which rely on chondrocytes as a model system. In this work, by using an integrated strategy based on unbiased proteomics and targeted cytokine profiling by a multiplexed protein array, we identified differences in the secretomes of human osteoarthritic synoviocytes in response to biotechnological unsulfated, and marine sulfated chondroitins treatments. The combined strategy allowed the identification of candidate proteins showing both common and distinct regulation responses to the two treatments of chondroitins. These molecules, mainly belonging to ECM proteins, enzymes, enzymatic inhibitors and cytokines, are potentially correlated to treatment outcomes. Overall, the present results provide an integrated overview of protein changes in human osteoarthritic synoviocytes secretome associated to different chondroitin treatments, thus improving current knowledge of the biochemical effects driven by these drugs potentially involved in pathways associated to osteoarthritis pathogenesis.


Asunto(s)
Sulfatos de Condroitina/farmacología , Osteoartritis/metabolismo , Sinoviocitos/efectos de los fármacos , Organismos Acuáticos/química , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Femenino , Glucosamina/farmacología , Humanos , Persona de Mediana Edad , Proteoma/genética , Proteoma/metabolismo , Sinoviocitos/metabolismo
17.
Sci Rep ; 9(1): 17894, 2019 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-31784636

RESUMEN

Formyl peptide receptors (FPRs) belong to the family of seven transmembrane Gi-protein coupled receptors (GPCR). FPR2 is considered the most promiscuous member of this family since it recognizes a wide variety of ligands. It plays a crucial role in several physio-pathological processes and different studies highlighted the correlation between its expression and the higher propensity to invasion and metastasis of some cancers. FPR2 stimulation by its synthetic agonist WKYMVm triggers multiple phosphorylations of intracellular signaling molecules, such as ERKs, PKC, PKB, p38MAPK, PI3K, PLC, and of non-signaling proteins, such as p47phox and p67phox which are involved in NADPH oxidase-dependent ROS generation. Biological effects of FPR2 stimulation include intracellular Ca2+ mobilization, cellular proliferation and migration, and wound healing. A systematic analysis of the phosphoproteome in FPR2-stimulated cells has not been yet reported. Herein, we describe a large-scale phosphoproteomic study in WKYMVm-stimulated CaLu-6 cells. By using high resolution MS/MS we identified 290 differentially phosphorylated proteins and 53 unique phosphopeptides mapping on 40 proteins. Phosphorylations on five selected phospho-proteins were further validated by western blotting, confirming their dependence on FPR2 stimulation. Interconnection between some of the signalling readout identified was also evaluated. Furthermore, we show that FPR2 stimulation with two anti-inflammatory agonists induces the phosphorylation of selected differentially phosphorylated proteins, suggesting their role in the resolution of inflammation. These data provide a promising resource for further studies on new signaling networks triggered by FPR2 and on novel molecular drug targets for human diseases.


Asunto(s)
Fosfopéptidos/análisis , Proteómica/métodos , Receptores de Formil Péptido/metabolismo , Receptores de Lipoxina/metabolismo , Transducción de Señal , Línea Celular Tumoral , Cromatografía Líquida de Alta Presión , Proteínas de Choque Térmico HSP27/metabolismo , Humanos , Componente 2 del Complejo de Mantenimiento de Minicromosoma/metabolismo , Oligopéptidos/metabolismo , Oligopéptidos/farmacología , Fosforilación/efectos de los fármacos , Mapas de Interacción de Proteínas , Receptores de Formil Péptido/agonistas , Receptores de Lipoxina/agonistas , Transducción de Señal/efectos de los fármacos , Espectrometría de Masas en Tándem
18.
Cancers (Basel) ; 11(10)2019 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-31557914

RESUMEN

BACKGROUND: The clinical impact of the monoclonal antibody cetuximab targeting the EGFR in colorectal cancer (CRC) is widely recognized. Nevertheless, the onset of cetuximab resistance is a serious issue that limits the effectiveness of this drug in targeted therapies. Unraveling the molecular players involved in cancer resistance is the first step towards the identification of alternative signaling pathways that can be targeted to circumvent resistance mechanisms restoring the efficacy of therapeutic treatments in a tailored manner. METHODS: By applying a nanoLC-MS/MS TMT isobaric labeling-based approach, we have delineated a molecular hallmark of cetuximab-resistance in CRC. RESULTS: We identified macrophage migration inhibitory factor (MIF) as a molecular determinant capable of triggering cancer resistance in sensitive human CRC cells. Blocking the MIF axis in resistant cells by a selective MIF inhibitor restores cell sensitivity to cetuximab. The combined treatment with cetuximab and the MIF inhibitor further enhanced cell growth inhibition in CRC resistant cell lines with a synergistic effect depending on inhibition of key downstream effectors of the MAPK and AKT signaling pathways. CONCLUSIONS: Collectively, our results suggest the association of MIF signaling and its dysregulation to cetuximab drug resistance, paving the way to the development of personalized combination therapies targeting the MIF axis.

19.
Molecules ; 24(15)2019 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-31362429

RESUMEN

A large range of chronic and degenerative diseases can be prevented through the use of food products and food bioactives. This study reports the health benefits and biological activities of the Urtica dioica (U. dioica) edible plant, with particular focus on its cancer chemopreventive potential. Numerous studies have attempted to investigate the most efficient anti-cancer therapy with few side effects and high toxicity on cancer cells to overcome the chemoresistance of cancer cells and the adverse effects of current therapies. In this regard, natural products from edible plants have been assessed as sources of anti-cancer agents. In this article, we review current knowledge from studies that have examined the cytotoxic, anti-tumor and anti-metastatic effects of U. dioica plant on several human cancers. Special attention has been dedicated to the treatment of breast cancer, the most prevalent cancer among women and one of the main causes of death worldwide. The anti-proliferative and apoptotic effects of U. dioica have been demonstrated on different human cancers, investigating the properties of U. dioica at cellular and molecular levels. The potent cytotoxicity and anti-cancer activity of the U. dioica extracts are due to its bioactive natural products content, including polyphenols which reportedly possess anti-oxidant, anti-mutagenic and anti-proliferative properties. The efficacy of this edible plant to prevent or mitigate human cancers has been demonstrated in laboratory conditions as well as in experimental animal models, paving the way to the development of nutraceuticals for new anti-cancer therapies.


Asunto(s)
Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Urtica dioica/química , Animales , Antineoplásicos Fitogénicos/uso terapéutico , Evaluación Preclínica de Medicamentos , Humanos , Fitoquímicos/química , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Extractos Vegetales/uso terapéutico , Relación Estructura-Actividad
20.
Food Chem ; 285: 111-118, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30797325

RESUMEN

Probiotic lactic acid bacteria (LAB) are generally employed in food industry because they contribute to nutritional value of fermented foods. Although knowledge of LAB composition is of high relevance for various industrial and biotechnological applications, the comprehensive identification of LAB species is sometimes technically challenging. Recently, MALDI-TOF MS-based methodologies for bacteria detection/identification in clinical diagnostics and agri-food proved to be an attractive strategy, complementary to traditional techniques for their sensitivity and specificity. In this study, we propose, for the first time, a novel methodology based on high resolution nano-LC-ESI-MS/MS for LAB identification at genus, species and sub-species level by using the sequence regions 33-52 and 72-82 of the S16 ribosomal protein as proteotypic peptide markers. The developed methodology was then applied to the analyses of buffalo and bovine whey starter cultures, thus assessing the applicability of the approach for the detection of LAB also in complex matrices.


Asunto(s)
Lactobacillales/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/análisis , Proteínas Bacterianas/metabolismo , Bovinos , Cromatografía Líquida de Alta Presión , Lactobacillales/aislamiento & purificación , Péptidos/análisis , Proteínas Ribosómicas/análisis , Proteínas Ribosómicas/metabolismo , Alineación de Secuencia , Proteína de Suero de Leche/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...