Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 370(6518): 856-860, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-33082293

RESUMEN

The causative agent of coronavirus disease 2019 (COVID-19) is the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). For many viruses, tissue tropism is determined by the availability of virus receptors and entry cofactors on the surface of host cells. In this study, we found that neuropilin-1 (NRP1), known to bind furin-cleaved substrates, significantly potentiates SARS-CoV-2 infectivity, an effect blocked by a monoclonal blocking antibody against NRP1. A SARS-CoV-2 mutant with an altered furin cleavage site did not depend on NRP1 for infectivity. Pathological analysis of olfactory epithelium obtained from human COVID-19 autopsies revealed that SARS-CoV-2 infected NRP1-positive cells facing the nasal cavity. Our data provide insight into SARS-CoV-2 cell infectivity and define a potential target for antiviral intervention.


Asunto(s)
Betacoronavirus/fisiología , Infecciones por Coronavirus/virología , Neuropilina-1/metabolismo , Neumonía Viral/virología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus , Enzima Convertidora de Angiotensina 2 , Animales , Anticuerpos Monoclonales/inmunología , Betacoronavirus/genética , COVID-19 , Células CACO-2 , Femenino , Células HEK293 , Interacciones Microbiota-Huesped , Humanos , Pulmón/metabolismo , Masculino , Nanopartículas del Metal , Ratones , Ratones Endogámicos C57BL , Mutación , Neuropilina-1/química , Neuropilina-1/genética , Neuropilina-1/inmunología , Neuropilina-2/metabolismo , Mucosa Olfatoria/metabolismo , Mucosa Olfatoria/virología , Pandemias , Fragmentos de Péptidos/metabolismo , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Unión Proteica , Dominios Proteicos , Mucosa Respiratoria/metabolismo , SARS-CoV-2 , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Glicoproteína de la Espiga del Coronavirus/química
2.
Cell Metab ; 32(2): 259-272.e10, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32531201

RESUMEN

An evolutionarily conserved function of glia is to provide metabolic and structural support for neurons. To identify molecules generated by glia and with vital functions for neurons, we used Drosophila melanogaster as a screening tool, and subsequently translated the findings to mice. We found that a cargo receptor operating in the secretory pathway of glia was essential to maintain axonal integrity by regulating iron buffering. Ferritin heavy chain was identified as the critical secretory cargo, required for the protection against iron-mediated ferroptotic axonal damage. In mice, ferritin heavy chain is highly expressed by oligodendrocytes and secreted by employing an unconventional secretion pathway involving extracellular vesicles. Disrupting the release of extracellular vesicles or the expression of ferritin heavy chain in oligodendrocytes causes neuronal loss and oxidative damage in mice. Our data point to a role of oligodendrocytes in providing an antioxidant defense system to support neurons against iron-mediated cytotoxicity.


Asunto(s)
Antioxidantes/metabolismo , Apoferritinas/metabolismo , Neuronas/metabolismo , Oligodendroglía/metabolismo , Animales , Masculino , Ratones , Ratones Endogámicos C57BL
3.
Bone Rep ; 1: 9-15, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26665155

RESUMEN

Silicon and boron share many similarities, both chemically and biochemically, including having similar effects on bone, although their mechanisms of action are not known. Here we compared the loading of silicon and boron into bone, their localization and how they are influenced by age (growth & development), to obtain further clues as to the biological effects of these elements and, especially, to see if they behave the same or not. Bone samples were obtained from two different studies where female Sprague Dawley rats had been maintained on a normal maintenance diet for up to 43 weeks. Total bone elemental levels were determined by ICP-OES following microwave assisted acid digestion. Silicon and boron levels in the decalcified bones (i.e. the collagen fraction) were also investigated. Silicon and boron showed marked differences in loading and in their localization in bone. Highest silicon and lowest boron concentrations were found in the under-mineralized bone of younger rats and lowest silicon and highest boron concentrations were found in the fully mineralized bone of the adult rat. Overall, however total bone silicon content increased with age, as did boron content, the latter mirroring the increase in calcium (mineral) content of bone. However, whereas silicon showed equal distribution in the collagen and mineral fractions of bone, boron was exclusively localized in the mineral fraction. These findings confirm the reported association between silicon and collagen, especially at the early stages of bone mineralization, and show that boron is associated with the bone mineral but not connective tissues. These data suggest that silicon and boron have different biological roles and that one is unlikely, therefore, to substitute for the other, or at least boron would not substitute for Si in the connective tissues. Finally, we noted that silicon levels in the mineral fraction varied greatly between the two studies, suggesting that one or more nutritional factor(s) may influence the loading of Si into the mineral fraction of bone. This and the nature of the interaction between Si and collagen deserve further attention.

4.
J Nutr ; 145(7): 1498-506, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25972522

RESUMEN

BACKGROUND: Dietary silicon has been positively linked with vascular health and protection against atherosclerotic plaque formation, but the mechanism of action is unclear. OBJECTIVES: We investigated the effect of dietary silicon on 1) serum and aorta silicon concentrations, 2) the development of aortic lesions and serum lipid concentrations, and 3) the structural and biomechanic properties of the aorta. METHODS: Two studies, of the same design, were conducted to address the above objectives. Female mice, lacking the apolipoprotein E (apoE) gene, and therefore susceptible to atherosclerosis, were separated into 3 groups of 10-15 mice, each exposed to a high-fat diet (21% wt milk fat and 1.5% wt cholesterol) but with differing concentrations of dietary silicon, namely: silicon-deprived (-Si; <3-µg silicon/g feed), silicon-replete in feed (+Si-feed; 100-µg silicon/g feed), and silicon-replete in drinking water (+Si-water; 115-µg silicon/mL) for 15-19 wk. Silicon supplementation was in the form of sodium metasilicate (feed) or monomethylsilanetriol (drinking water). RESULTS: The serum silicon concentration in the -Si group was significantly lower than in the +Si-feed (by up to 78%; P < 0.003) and the +Si-water (by up to 84%; P < 0.006) groups. The aorta silicon concentration was also lower in the -Si group than in the +Si-feed group (by 65%; P = 0.025), but not compared with the +Si-water group. There were no differences in serum and aorta silicon concentrations between the silicon-replete groups. Body weights, tissue wet weights at necropsy, and structural, biomechanic, and morphologic properties of the aorta were not affected by dietary silicon; nor were the development of fatty lesions and serum lipid concentrations. CONCLUSIONS: These findings suggest that dietary silicon has no effect on atherosclerosis development and vascular health in the apoE mouse model of diet-induced atherosclerosis, contrary to the reported findings in the cholesterol-fed rabbit model.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Dieta , Silicio/administración & dosificación , Silicio/deficiencia , Animales , Aorta/efectos de los fármacos , Aorta/metabolismo , Apolipoproteínas E/genética , Aterosclerosis/sangre , Aterosclerosis/tratamiento farmacológico , Peso Corporal , HDL-Colesterol/sangre , LDL-Colesterol/sangre , Suplementos Dietéticos , Modelos Animales de Enfermedad , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Placa Aterosclerótica/sangre , Placa Aterosclerótica/prevención & control , Silicio/sangre , Triglicéridos/sangre
5.
Bone ; 75: 40-8, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25687224

RESUMEN

Silicon may be important for bone and connective tissue health. Higher concentrations of silicon are suggested to be associated with bone and the connective tissues, compared with the non-connective soft tissues. Moreover, in connective tissues it has been suggested that silicon levels may decrease with age based upon analyses of human aorta. These claims, however, have not been tested under controlled conditions. Here connective and non-connective tissues were collected and analysed for silicon levels from female Sprague-Dawley rats of different ages (namely, 3, 5, 8, 12, 26 and 43 weeks; n=8-10 per age group), all maintained on the same feed source and drinking water, and kept in the same environment from weaning to adulthood. Tissues (696 samples) were digested in nitric acid and analysed by inductively coupled plasma optical emission spectrometry for total silicon content. Fasting serum samples were also collected, diluted and analysed for silicon. Higher concentrations of silicon (up to 50-fold) were found associated with bone and the connective tissues compared with the non-connective tissues. Although total silicon content increased with age in all tissues, the highest connective tissue silicon concentrations (up to 9.98 µg/g wet weight) were found in young weanling rats, decreasing thereafter with age (by 2-6 fold). Fasting serum silicon concentrations reflected the pattern of connective tissue silicon concentrations and, both measures, when compared to collagen data from a prior experiment in Sprague-Dawley rats, mirrored type I collagen turnover with age. Our findings confirm the link between silicon and connective tissues and would imply that young growing rats have proportionally higher requirements for dietary silicon than mature adults, for bone and connective tissue development, although this was not formally investigated here. However, estimation of total body silicon content suggested that actual Si requirements may be substantially lower than previously estimated which could explain why absolute silicon deficiency is difficult to achieve but, when it is achieved in young growing animals, it results in stunted growth and abnormal development of bone and other connective tissues.


Asunto(s)
Envejecimiento/metabolismo , Tejido Conectivo/química , Silicio/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Ratas , Ratas Sprague-Dawley , Silicio/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...