Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 67(7): 5473-5501, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38554135

RESUMEN

Proteolysis-Targeting Chimeras (PROTACs) are bifunctional molecules that bring a target protein and an E3 ubiquitin ligase into proximity to append ubiquitin, thus directing target degradation. Although numerous PROTACs have entered clinical trials, their development remains challenging, and their large size can produce poor drug-like properties. To overcome these limitations, we have modified our Coferon platform to generate Combinatorial Ubiquitination REal-time PROteolysis (CURE-PROs). CURE-PROs are small molecule degraders designed to self-assemble through reversible bio-orthogonal linkers to form covalent heterodimers. By modifying known ligands for Cereblon, MDM2, VHL, and BRD with complementary phenylboronic acid and diol/catechol linkers, we have successfully created CURE-PROs that direct degradation of BRD4 both in vitro and in vivo. The combinatorial nature of our platform significantly reduces synthesis time and effort to identify the optimal linker length and E3 ligase partner to each target and is readily amenable to screening for new targets.


Asunto(s)
Proteínas Nucleares , Factores de Transcripción , Proteolisis , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Ubiquitinación , Ubiquitina-Proteína Ligasas/metabolismo , Ligandos
2.
Life (Basel) ; 13(11)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38004328

RESUMEN

Alfalfa (Medicago sativa L.), one of the most extensively grown forage crops, is sensitive to saline soils. We measured the breeding efficiency for increased salt tolerance in alfalfa by comparing lines selected from BC79S, CS, and SII populations with their unselected parental means for forage mass and associated changes in stem length, leaf-to-stem ratio (LSR), number of nodes per stem, crude protein (CP) content, and neutral detergent fiber (NDF) content. The overall forage mass in the non-salt-stressed test (9562 kg ha-1) was greater (p < 0.001) than under salt stress (5783 kg ha-1), with a 40% production advantage. In the non-salt-stressed test, the BC79S and CS lines averaged at a 4% lower production than their parents, while SII lines had on average a 9% greater production. Conversely, in the salt-stressed test, all lines showed a 20% overall greater seasonal production than their parents. Some selected lines produced more forage mass in both the non-stressed and salt-stressed tests than their parents. The stem length, LSR, node number, CP content, and NDF content of the selected lines varied with respect to non-stressed vs. stressed, but they tended not to differ greatly from their respective parental means under either non- or salt-stressed conditions. The selection protocol provided a universal increase in forage mass under salt-stressed field conditions of the selected lines. Furthermore, we identified lines with forage mass values greater than their parental means under non- and salt-stressed field conditions.

3.
Curr Biol ; 33(21): 4689-4696.e4, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37802052

RESUMEN

Lions have long been perceived as Africa's, if not the world's, most fearsome terrestrial predator,1,2,3,4,5,6,7,8,9 the "king of beasts". Wildlife's fear of humans may, however, be far more powerful and all-prevailing1,10 as recent global surveys show that humans kill prey at much higher rates than other predators,10,11,12 due partly to technologies such as hunting with dogs or guns.11,13,14,15 We comprehensively experimentally tested whether wildlife's fear of humans exceeds even that of lions, by quantifying fear responses1 in the majority of carnivore and ungulate species (n = 19) inhabiting South Africa`s Greater Kruger National Park (GKNP),9,15,16,17 using automated camera-speaker systems9,18 at waterholes during the dry season that broadcast playbacks of humans, lions, hunting sounds (dogs, gunshots) or non-predator controls (birds).9,19,20,21,22 Fear of humans significantly exceeded that of lions throughout the savanna mammal community. As a whole (n = 4,238 independent trials), wildlife were twice as likely to run (p < 0.001) and abandoned waterholes in 40% faster time (p < 0.001) in response to humans than to lions (or hunting sounds). Fully 95% of species ran more from humans than lions (significantly in giraffes, leopards, hyenas, zebras, kudu, warthog, and impala) or abandoned waterholes faster (significantly in rhinoceroses and elephants). Our results greatly strengthen the growing experimental evidence that wildlife worldwide fear the human "super predator" far more than other predators,1,19,20,21,22,23,24,25,26,27,28 and the very substantial fear of humans demonstrated can be expected to cause considerable ecological impacts,1,6,22,23,24,29,30,31,32,33,34,35 presenting challenges for tourism-dependent conservation,1,36,37 particularly in Africa,38,39 while providing new opportunities to protect some species.1,22,40.


Asunto(s)
Leones , Panthera , Humanos , Animales , Porcinos , Perros , Sudáfrica , Leones/fisiología , Pradera , Conducta Predatoria/fisiología , Animales Salvajes , Perisodáctilos , Equidae/fisiología , Ecosistema
4.
J Dairy Sci ; 106(6): 3918-3931, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37105873

RESUMEN

Insufficient dry matter intake (DMI) of pasture by dairy cattle is a major factor limiting growth and milk production; however, it has been hypothesized that some dairy breeds may be more efficient grazers than others. This study was conducted to determine whether dairy breed types differ in DMI and feed efficiency when grazing either grass monoculture or grass-legume mixed pastures. The experiment compared 4 different dairy breed types (Jersey, Holstein, Holstein-Jersey crossbreds, and Montbéliarde-Swedish Red-Holstein 3-breed crossbreds) and 2 levels of pasture type [grass monoculture (MONO) and grass-birdsfoot trefoil (BFT) mixture (MX)] for a total of 8 treatments. Pastures were rotationally stocked with groups of 4 prepubertal heifers for 105 d for 3 yr, and DMI was determined from herbage disappearance. Feed conversion efficiency (FCE) and residual feed intake (RFI) were then derived from DMI, and heifer body weights (BW) and normalized to animal units (AU) as 40% metabolic mature BW of the corresponding dairy breed type to account for inherent differences in size and growth rates. We observed differences in DMI and feed efficiency among breed types and between pasture types. On average, Holsteins had the greatest overall DMI (4.4 kg/AU), followed by intermediate DMI by the crossbreds (4.0 kg/AU), and Jerseys had the least DMI (3.6 kg/AU). Heifers grazing MX pastures had on average 22% greater DMI than those grazing MONO, but heifers on grass monocultures were more efficient in converting DMI to BW gain (i.e., RFI/AU of 0.27 and -0.27, respectively; more negative RFI numbers indicate less DMI to achieve the expected gains). Overall, Jerseys had the most favorable feed efficiency; however, ranking of Holsteins and crossbreds depended upon the feed efficiency metric. This study is one of the first to compare the interaction of dairy breed and pasture quality on grazing efficiency. However, the lack of a breed type × pasture type interaction for DMI, FCE, or RFI indicated that none of these dairy breed types were better adapted than another breed type to pastures with contrasting levels of nutritive value.


Asunto(s)
Lotus , Bovinos , Animales , Femenino , Poaceae , Fitomejoramiento , Ingestión de Alimentos , Peso Corporal , Alimentación Animal/análisis , Dieta/veterinaria , Lactancia
5.
J Dairy Sci ; 104(10): 10863-10878, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34389144

RESUMEN

Dairy heifers developed in certified organic programs, especially those utilizing pasture-based management schemes, have lower rates of gain than heifers raised in nonorganic confinement production systems in temperate climates, such as in the Intermountain West region of the United States. This study investigates the effects that different forages in a rotational grazing system have on development of organically raised Jersey heifers. Over 3 years, 210 yearling Jersey heifers were randomly assigned to one of 9 treatments, including a conventional confinement control where animals were fed a total mixed ration or one of 8 pasture treatments: Cache Meadow bromegrass (Bromus riparius Rehmann), QuickDraw orchard grass (Dactylis glomerata L.), Amazon perennial ryegrass (Lolium perenne L.), or Fawn tall fescue (Schendonorus arundinaceus [Schreb.] Dumort) and each individual grass interseeded with birdsfoot trefoil (Lotus corniculatus L., BFT). Each treatment had 3 blocks/yr over the 3-yr period, with each block having a 0.4 ha pasture of each treatment. Every 35 d, over a 105-d period, heifers were weighed and measured for hip height, and blood samples were collected to determine serum insulin-like growth factor-1 and blood urea nitrogen concentrations. Fecal egg counts were also assessed. Heifer body weight (BW), blood urea nitrogen, and insulin-like growth factor-1 concentrations were affected by treatment when analyzed over time. Heifers on grass-BFT pastures had increased BW compared with heifers on monoculture grass pastures. Heifers receiving a total mixed ration or perennial ryegrass+BFT had increased BW gain over the 105-d period compared with heifers grazing tall fescue+BFT, orchard grass, perennial ryegrass, meadow bromegrass, or tall fescue. Individually for all grass species, heifers grazing +BFT pastures had greater ending BW and weight gain than heifers grazing the respective grass monocultures. Furthermore, weight gain for heifers on perennial ryegrass+BFT, meadow bromegrass+BFT, and orchard grass+BFT were not different from those on a total mixed ration. Heifers grazing grass-BFT pastures had increased blood urea nitrogen compared with heifers grazing monoculture grass pastures. Heifer hip height and fecal egg counts were not affected by treatment. These results show that the addition of BFT to organic pasture improves growth of grazing replacement heifers. Economic analyses also demonstrate that interseeding grass pastures with BFT results in an increased economic return compared with grazing monoculture grass pastures. Grass pastures interseeded with BFT may be a sustainable option to achieve adequate growth of Jersey heifers raised in an organic pasture scenario in a temperate climate.


Asunto(s)
Festuca , Lotus , Alimentación Animal/análisis , Animales , Bovinos , Dieta/veterinaria , Aumento de Peso
6.
Immunotherapy ; 13(12): 977-987, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34184542

RESUMEN

Aim: Graft-versus-host disease (GvHD) is a major complication arising in patients undergoing allogenic hematopoietic stem cell transplantation. Material & methods: We tested ruxolitinib (a selective JAK1/2 inhibitor) efficacy in three different preclinical models of GvHD. Results: Ruxolitinib, at doses that mimic clinically achievable human JAK/signal transducers and activators of transcription target inhibition, significantly reduced alloreactive T-cell activation and infiltration in the lung and skin, leading to improved outcomes in two experimental models of steroid-refractory acute and chronic GvHD. Additionally, we describe a novel humanized GvHD model in which immunodeficient NOG animals are engineered to produce human IL-15 to facilitate enhanced T- and NK cell engraftment, leading to severe GvHD. Conclusion: Ruxolitinib treatment ameliorated disease symptoms resulting from targeted immune modulation via JAK/signal transducers and activators of transcription signaling inhibition.


Asunto(s)
Enfermedad Injerto contra Huésped/patología , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Inhibidores de las Cinasas Janus/farmacología , Nitrilos/farmacología , Pirazoles/farmacología , Pirimidinas/farmacología , Animales , Modelos Animales de Enfermedad , Xenoinjertos , Humanos , Janus Quinasa 1/antagonistas & inhibidores , Janus Quinasa 2/antagonistas & inhibidores , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos
7.
An Acad Bras Cienc ; 93(suppl 1): e20201096, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34076206

RESUMEN

BINGO (BAO from Integrated Neutral Gas Observations) is a unique radio telescope designed to map the intensity of neutral hydrogen distribution at cosmological distances, making the first detection of Baryon Acoustic Oscillations (BAO) in the frequency band 980 MHz - 1260 MHz, corresponding to a redshift range 0.127 < z < 0.449. BAO is one of the most powerful probes of cosmological parameters and BINGO was designed to detect the BAO signal to a level that makes it possible to put new constraints on the equation of state of dark energy. The telescope will be built in Paraíba, Brazil and consists of two \thicksim 40m mirrors, a feedhorn array of 50 horns, and no moving parts, working as a drift-scan instrument. It will cover a 15 ^{\circ} ∘ declination strip centered at \sim \delta ∼ δ =-15 ^{\circ} ∘ , mapping \sim ∼ 5400 square degrees in the sky. The BINGO consortium is led by University of São Paulo with co-leadership at National Institute for Space Research and Campina Grande Federal University (Brazil). Telescope subsystems have already been fabricated and tested, and the dish and structure fabrication are expected to start in late 2020, as well as the road and terrain preparation.

8.
J Dairy Sci ; 104(10): 10879-10895, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33934863

RESUMEN

Low dietary energy and decreased intake of herbage have been attributed to the reduced performance of grazing dairy cattle. We hypothesized that grasses with inherently greater energy would interact in a complementary way with condensed tannins (CT) in birdsfoot trefoil to increase herbage intake by grazing dairy heifers. Eight pasture treatments comprising high-sugar perennial ryegrass (Lolium perenne L.), orchardgrass (Dactylis glomerata L.), meadow bromegrass (Bromus riparius Rehmann), and tall fescue [Schendonorus arundinaceus (Schreb.) Dumort] were established in Lewiston, Utah as monocultures and binary mixtures with birdsfoot trefoil (Lotus corniculatus L.; BFT). Pasture treatments were rotationally stocked by Jersey heifers for 105 d in 2017 and 2018, and herbage samples were collected pre- and postgrazing for each 7-d grazing period and analyzed for herbage mass, nutritive value, and apparent herbage intake. We observed differences among pasture treatments in herbage quantity and nutritive value, as well as differences in herbage intake by grazing Jersey heifers. On average, grass-BFT mixtures had greater herbage intake than grass monocultures, and every grass-BFT treatment individually had greater herbage intake than their respective grass monocultures. Using multivariate analyses, we determined that approximately 50% of the variation in herbage intake was due to nutritive and physical herbage characteristics, with the most explanatory being characteristics related to fiber and energy, followed by those related to the percent of BFT in the herbage. Grass monocultures exhibited a range of inherent dietary energy, but there was indication that an imbalance of energy to crude protein (e.g., protein deficient) reduced intake of grass monocultures. Moreover, there was some evidence of a complementary effect between increased dietary energy and CT; however, low CT levels made it impossible to determine the effect of CT on herbage intake per se. This study confirmed that chemical and physical characteristics inherent to different pasture species have a large effect on herbage intake by grazing cattle. Pastures planted to binary mixtures of nutritious grasses and birdsfoot trefoil increase herbage intake of temperate pastures by grazing Jersey heifers.


Asunto(s)
Lolium , Lotus , Alimentación Animal/análisis , Animales , Bovinos , Dieta/veterinaria , Poaceae , Estaciones del Año
9.
Front Pharmacol ; 12: 650295, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33981229

RESUMEN

Hyperinflammatory syndromes comprise a heterogeneous group of disorders characterized by severe inflammation, multiple organ dysfunction, and potentially death. In response to antigenic stimulus (e.g., SARS-CoV-2 infection), overactivated CD8+ T-cells and macrophages produce high levels of proinflammatory cytokines, such as IFN-γ, TNF-α, IL-6, and IL-12. Multiple inflammatory mediators implicated in hyperinflammatory syndromes utilize the Janus kinase-signal transducers and activators of transcription (JAK-STAT) cascade to propagate their biological function. Our findings demonstrate that oral ruxolitinib dosing designed to mimic clinically relevant JAK-STAT pathway inhibition significantly reduces the harmful consequences of immune overactivation in multiple hyperinflammatory models. In contrast to monoclonal antibody therapies targeting a single cytokine, ruxolitinib effectively downregulates the functional effect of multiple cytokines implicated in hyperinflammatory states, without broad immunosuppression.

10.
BMC Biol ; 19(1): 76, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33858413

RESUMEN

BACKGROUND: The pituitary gland is a neuroendocrine organ containing diverse cell types specialized in secreting hormones that regulate physiology. Pituitary thyrotropes produce thyroid-stimulating hormone (TSH), a critical factor for growth and maintenance of metabolism. The transcription factors POU1F1 and GATA2 have been implicated in thyrotrope fate, but the transcriptomic and epigenomic landscapes of these neuroendocrine cells have not been characterized. The goal of this work was to discover transcriptional regulatory elements that drive thyrotrope fate. RESULTS: We identified the transcription factors and epigenomic changes in chromatin that are associated with differentiation of POU1F1-expressing progenitors into thyrotropes using cell lines that represent an undifferentiated Pou1f1 lineage progenitor (GHF-T1) and a committed thyrotrope line that produces TSH (TαT1). We compared RNA-seq, ATAC-seq, histone modification (H3K27Ac, H3K4Me1, and H3K27Me3), and POU1F1 binding in these cell lines. POU1F1 binding sites are commonly associated with bZIP transcription factor consensus binding sites in GHF-T1 cells and Helix-Turn-Helix (HTH) or basic Helix-Loop-Helix (bHLH) factors in TαT1 cells, suggesting that these classes of transcription factors may recruit or cooperate with POU1F1 binding at unique sites. We validated enhancer function of novel elements we mapped near Cga, Pitx1, Gata2, and Tshb by transfection in TαT1 cells. Finally, we confirmed that an enhancer element near Tshb can drive expression in thyrotropes of transgenic mice, and we demonstrate that GATA2 enhances Tshb expression through this element. CONCLUSION: These results extend the ENCODE multi-omic profiling approach to the pituitary gland, which should be valuable for understanding pituitary development and disease pathogenesis.


Asunto(s)
Hipófisis , Animales , Ratones , Hipófisis/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Tirotropina/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transfección
11.
Bioorg Med Chem Lett ; 32: 127661, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33160023

RESUMEN

We previously reported medicinal chemistry efforts that identified MK-5204, an orally efficacious ß-1,3-glucan synthesis inhibitor derived from the natural product enfumafungin. Further extensive optimization of the C2 triazole substituent identified 4-pyridyl as the preferred replacement for the carboxamide of MK-5204, leading to improvements in antifungal activity in the presence of serum, and increased oral exposure. Reoptimizing the aminoether at C3 in the presence of this newly discovered C2 substituent, confirmed that the (R) t-butyl, methyl aminoether of MK-5204 provided the best balance of these two key parameters, culminating in the discovery of ibrexafungerp, which is currently in phase III clinical trials. Ibrexafungerp displayed significantly improved oral efficacy in murine infection models, making it a superior candidate for clinical development as an oral treatment for Candida and Aspergillus infections.


Asunto(s)
Antifúngicos/farmacología , Aspergillus/efectos de los fármacos , Candida albicans/efectos de los fármacos , Glicósidos/química , Triterpenos/química , beta-Glucanos/metabolismo , Administración Oral , Animales , Antifúngicos/síntesis química , Antifúngicos/farmacocinética , Antifúngicos/uso terapéutico , Aspergilosis/tratamiento farmacológico , Candidiasis/tratamiento farmacológico , Modelos Animales de Enfermedad , Glicósidos/farmacocinética , Glicósidos/farmacología , Glicósidos/uso terapéutico , Semivida , Ratones , Relación Estructura-Actividad , Triterpenos/farmacocinética , Triterpenos/farmacología , Triterpenos/uso terapéutico
12.
Clin Cancer Res ; 26(23): 6299-6309, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32998963

RESUMEN

PURPOSE: T cells engineered to express a chimeric antigen receptor (CAR) are a promising cancer immunotherapy. Such targeted therapies have shown long-term relapse-free survival in patients with B-cell leukemia and lymphoma. However, cytokine release syndrome (CRS) represents a serious, potentially life-threatening side effect often associated with CAR T-cell therapy. CRS manifests as a rapid (hyper)immune reaction driven by excessive inflammatory cytokine release, including IFNγ and IL6. EXPERIMENTAL DESIGN: Many cytokines implicated in CRS are known to signal through the JAK-STAT pathway. Here we study the effect of blocking JAK pathway signaling on CAR T-cell proliferation, antitumor activity, and cytokine levels in in vitro and in vivo models. RESULTS: We report that itacitinib, a potent, selective JAK1 inhibitor, was able to significantly and dose-dependently reduce levels of multiple cytokines implicated in CRS in several in vitro and in vivo models. Importantly, we also report that at clinically relevant doses that mimic human JAK1 pharmacologic inhibition, itacitinib did not significantly inhibit proliferation or antitumor killing capacity of three different human CAR T-cell constructs (GD2, EGFR, and CD19). Finally, in an in vivo model, antitumor activity of CD19-CAR T cells adoptively transferred into CD19+ tumor-bearing immunodeficient animals was unabated by oral itacitinib treatment. CONCLUSIONS: Together, these data suggest that itacitinib has potential as a prophylactic agent for the prevention of CAR T cell-induced CRS, and a phase II clinical trial of itacitinib for prevention of CRS induced by CAR T-cell therapy has been initiated (NCT04071366).


Asunto(s)
Azetidinas/farmacología , Síndrome de Liberación de Citoquinas/tratamiento farmacológico , Citocinas/antagonistas & inhibidores , Inmunoterapia Adoptiva/efectos adversos , Ácidos Isonicotínicos/farmacología , Janus Quinasa 1/antagonistas & inhibidores , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Animales , Apoptosis , Proliferación Celular , Síndrome de Liberación de Citoquinas/etiología , Síndrome de Liberación de Citoquinas/patología , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Leucemia-Linfoma Linfoblástico de Células Precursoras/inmunología , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Eur J Pharmacol ; 885: 173505, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32861662

RESUMEN

Pharmacological modulation of the Janus kinase (JAK) family has achieved clinically meaningful therapeutic outcomes for the treatment of inflammatory and hematopoietic diseases. Several JAK1 selective compounds are being investigated clinically to determine their anti-inflammatory potential. We used recombinant enzymes and primary human lymphocytes to assess the JAK1 specificity of itacitinib (INCB039110) and study inhibition of signal transducers and activators of transcription (STAT) signaling. Rodent models of arthritis and inflammatory bowel disease were subsequently explored to elucidate the efficacy of orally administered itacitinib on inflammatory pathogenesis. Itacitinib is a potent and selective JAK1 inhibitor when profiled against the other JAK family members. Upon oral administration in rodents, itacitinib achieved dose-dependent pharmacokinetic exposures that highly correlated with STAT3 pharmacodynamic pathway inhibition. Itacitinib ameliorated symptoms and pathology of established experimentally-induced arthritis in a dose-dependent manner. Furthermore, itacitinib effectively delayed disease onset, reduced symptom severity, and accelerated recovery in three distinct mouse models of inflammatory bowel disease. Low dose itacitinib administered via cannula directly into the colon was highly efficacious in TNBS-induced colitis but with minimal systemic drug exposure, suggesting localized JAK1 inhibition is sufficient for disease amelioration. Itacitinib treatment in an acute graft-versus-host disease (GvHD) model rapidly reduced inflammatory markers within lymphocytes and target tissue, resulting in a marked improvement in disease symptoms. This is the first manuscript describing itacitinib as a potent and selective JAK1 inhibitor with anti-inflammatory activity across multiple preclinical disease models. These data support the scientific rationale for ongoing clinical trials studying itacitinib in select GvHD patient populations.


Asunto(s)
Azetidinas/farmacología , Inflamación/tratamiento farmacológico , Ácidos Isonicotínicos/farmacología , Janus Quinasa 1/antagonistas & inhibidores , Animales , Artritis Experimental/tratamiento farmacológico , Azetidinas/farmacocinética , Azetidinas/uso terapéutico , Quimiocina CCL2/efectos de los fármacos , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Relación Dosis-Respuesta a Droga , Enfermedad Injerto contra Huésped/tratamiento farmacológico , Humanos , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Ácidos Isonicotínicos/farmacocinética , Ácidos Isonicotínicos/uso terapéutico , Linfocitos/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Cultivo Primario de Células , Ratas , Ratas Endogámicas Lew , Factores de Transcripción STAT/efectos de los fármacos , Factor de Transcripción STAT3/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Linfocitos T/efectos de los fármacos
14.
Bioorg Med Chem Lett ; 30(17): 127357, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32738971

RESUMEN

Our previously reported efforts to produce an orally active ß-1,3-glucan synthesis inhibitor through the semi-synthetic modification of enfumafungin focused on replacing the C2 acetoxy moiety with an aminotetrazole and the C3 glycoside with a N,N-dimethylaminoether moiety. This work details further optimization of the C2 heterocyclic substituent, which identified 3-carboxamide-1,2,4-triazole as a replacement for the aminotetrazole with comparable antifungal activity. Alkylation of either the carboxamidetriazole at C2 or the aminoether at C3 failed to significantly improve oral efficacy. However, replacement of the isopropyl alpha amino substituent with a t-butyl, improved oral exposure while maintaining antifungal activity. These two structural modifications produced MK-5204, which demonstrated broad spectrum activity against Candida species and robust oral efficacy in a murine model of disseminated Candidiasis without the N-dealkylation liability observed for the previous lead.


Asunto(s)
Antifúngicos/química , Triazoles/química , beta-Glucanos/metabolismo , Administración Oral , Animales , Antifúngicos/metabolismo , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Candida/efectos de los fármacos , Candidiasis/tratamiento farmacológico , Modelos Animales de Enfermedad , Glucosiltransferasas/antagonistas & inhibidores , Glucosiltransferasas/metabolismo , Glicósidos/química , Semivida , Ratones , Pruebas de Sensibilidad Microbiana , Estereoisomerismo , Relación Estructura-Actividad , Triazoles/metabolismo , Triazoles/farmacología , Triazoles/uso terapéutico , Triterpenos/química , beta-Glucanos/química
16.
Int J Mol Sci ; 21(9)2020 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-32397526

RESUMEN

Soil salinity is a growing problem in world production agriculture. Continued improvement in crop salt tolerance will require the implementation of innovative breeding strategies such as marker-assisted selection (MAS) and genomic selection (GS). Genetic analyses for yield and vigor traits under salt stress in alfalfa breeding populations with three different phenotypic datasets was assessed. Genotype-by-sequencing (GBS) developed markers with allele dosage and phenotypic data were analyzed by genome-wide association studies (GWAS) and GS using different models. GWAS identified 27 single nucleotide polymorphism (SNP) markers associated with salt tolerance. Mapping SNPs markers against the Medicago truncatula reference genome revealed several putative candidate genes based on their roles in response to salt stress. Additionally, eight GS models were used to estimate breeding values of the training population under salt stress. Highest prediction accuracies and root mean square errors were used to determine the best prediction model. The machine learning methods (support vector machine and random forest) performance best with the prediction accuracy of 0.793 for yield. The marker loci and candidate genes identified, along with optimized GS prediction models, were shown to be useful in improvement of alfalfa with enhanced salt tolerance. DNA markers and the outcome of the GS will be made available to the alfalfa breeding community in efforts to accelerate genetic gains, in the development of biotic stress tolerant and more productive modern-day alfalfa cultivars.


Asunto(s)
Estudio de Asociación del Genoma Completo , Medicago sativa/genética , Tolerancia a la Sal/genética , Tetraploidía , Alelos , ADN de Plantas/genética , Conjuntos de Datos como Asunto , Genes de Plantas , Marcadores Genéticos , Desequilibrio de Ligamiento , Modelos Genéticos , Fenotipo , Fitomejoramiento , Polimorfismo de Nucleótido Simple , Estaciones del Año , Selección Genética , Máquina de Vectores de Soporte
17.
Protein Cell ; 11(8): 565-583, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32193873

RESUMEN

The anterior pituitary gland drives highly conserved physiologic processes in mammalian species. These hormonally controlled processes are central to somatic growth, pubertal transformation, fertility, lactation, and metabolism. Current cellular models of mammalian anteiror pituitary, largely built on candidate gene based immuno-histochemical and mRNA analyses, suggest that each of the seven hormones synthesized by the pituitary is produced by a specific and exclusive cell lineage. However, emerging evidence suggests more complex relationship between hormone specificity and cell plasticity. Here we have applied massively parallel single-cell RNA sequencing (scRNA-seq), in conjunction with complementary imaging-based single-cell analyses of mRNAs and proteins, to systematically map both cell-type diversity and functional state heterogeneity in adult male and female mouse pituitaries at single-cell resolution and in the context of major physiologic demands. These quantitative single-cell analyses reveal sex-specific cell-type composition under normal pituitary homeostasis, identify an array of cells associated with complex complements of hormone-enrichment, and undercover non-hormone producing interstitial and supporting cell-types. Interestingly, we also identified a Pou1f1-expressing cell population that is characterized by a unique multi-hormone gene expression profile. In response to two well-defined physiologic stresses, dynamic shifts in cellular diversity and transcriptome profiles were observed for major hormone producing and the putative multi-hormone cells. These studies reveal unanticipated cellular complexity and plasticity in adult pituitary, and provide a rich resource for further validating and expanding our molecular understanding of pituitary gene expression programs and hormone production.


Asunto(s)
Plasticidad de la Célula/genética , Hipófisis/citología , Hipófisis/metabolismo , ARN Mensajero/genética , RNA-Seq , Caracteres Sexuales , Análisis de la Célula Individual , Transcriptoma , Animales , Femenino , Homeostasis/genética , Masculino , Ratones , Ratones Transgénicos
18.
Endocrinology ; 161(5)2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32188976

RESUMEN

Differentiation of the hormone-producing cells of the pituitary represents an informative model of cell fate determination. The generation and maintenance of 2 pituitary lineages, the growth hormone (GH)- producing somatotropes and the prolactin (PRL)- producing lactotropes, are dependent on the pituitary-specific transcription factor, POU1F1. While POU1F1 is expressed in both cell types, and plays a role in activation of both the Gh and Prl genes, expression of Gh and Prl is restricted to somatotropes and lactotropes, respectively. These observations imply the existence of additional factors that contribute to the somatotrope and lactotrope identities and their hormone expressions. Prior transcriptome analysis of primary somatotropes and lactotropes isolated from the mouse pituitary identified enrichment of a transcription factor, Nr4a2, in the lactotropes. Nr4a2 was shown in a cell culture model to bind the Prl promoter at a position adjacent to Pou1f1 and to synergize with Pou1f1 in driving Prl transcription. Here we demonstrate in vivo the role of Nr4a2 as an enhancer of Prl expression by conditional gene inactivation of the Nr4a2 gene in mouse lactotropes. We demonstrate that nuclear orphan receptor transcription factor (NR4A2) binding at the Prl promoter is dependent on actions of POU1F1; while POU1F1 is essential to loading polymerase (Pol) II on the Prl promoter, Nr4a2 plays a role in enhancing Pol II release into the Prl gene body. These studies establish an in vivo role of Nr4a2 in enhancing Prl expression in mouse lactotropes, explore its mechanism of action, and establish a system for further study of the lactotrope lineage in the pituitary.


Asunto(s)
Regulación de la Expresión Génica , Lactotrofos/metabolismo , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Hipófisis/metabolismo , Prolactina/genética , Animales , Células Cultivadas , Femenino , Lactotrofos/citología , Ratones Endogámicos , Ratones Noqueados , Ratones Transgénicos , Microscopía Fluorescente , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Hipófisis/citología , Prolactina/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica , Factor de Transcripción Pit-1/genética , Factor de Transcripción Pit-1/metabolismo
19.
Front Immunol ; 11: 620098, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33658996

RESUMEN

The goal of this study was to elucidate the anti-pruritic and anti-inflammatory efficacy of ruxolitinib cream in experimentally-induced dermatitis. Atopic dermatitis (AD), the most common chronic relapsing inflammatory skin disease, significantly impairs patients' quality of life, with pruritus being a common complaint. The sensation of itch results from the interplay between epidermal barrier dysfunction, upregulated immune signaling and the activation of the central nervous system. The Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway plays a central role in pro-inflammatory cytokine signaling in AD. Ruxolitinib cream is a potent and selective JAK1/2 inhibitor currently undergoing clinical evaluation in adults with mild-to-moderate AD (NCT03745638, NCT03920852 and NCT03745651). The efficacy of ruxolitinib cream was tested in murine models of acute and chronic dermatitis and was also characterized in an ex vivo human skin dermatitis model. Ruxolitinib cream was highly effective at ameliorating disease symptoms in multiple murine dermatitis models through downregulation of T helper (Th)2-driven inflammation, resulting in reduced skin thickening and decreased itch. Pathway analysis of mouse ear tissue and human skin explants underscored the role for ruxolitinib in ameliorating inflammation and reducing itch via modulation of the JAK-STAT pathway. Together, the data offer a strong rationale for the use of ruxolitinib cream as a potent therapeutic agent for the clinical management of atopic dermatitis.


Asunto(s)
Dermatitis/tratamiento farmacológico , Inhibidores de las Cinasas Janus/uso terapéutico , Prurito/tratamiento farmacológico , Pirazoles/uso terapéutico , Administración Cutánea , Animales , Betametasona/administración & dosificación , Betametasona/uso terapéutico , Clobetasol/administración & dosificación , Clobetasol/uso terapéutico , Citocinas/biosíntesis , Citocinas/genética , Citocinas/toxicidad , Modelos Animales de Enfermedad , Erupciones por Medicamentos/tratamiento farmacológico , Erupciones por Medicamentos/inmunología , Evaluación Preclínica de Medicamentos , Femenino , Fluoresceína-5-Isotiocianato/toxicidad , Aseo Animal/efectos de los fármacos , Humanos , Técnicas In Vitro , Interleucina-33/genética , Inhibidores de las Cinasas Janus/administración & dosificación , Subgrupos Linfocitarios/efectos de los fármacos , Subgrupos Linfocitarios/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Nitrilos , Pomadas , Técnicas de Cultivo de Órganos , Pirazoles/administración & dosificación , Pirimidinas , Distribución Aleatoria , Transducción de Señal/efectos de los fármacos , Piel/efectos de los fármacos , Organismos Libres de Patógenos Específicos , Linfocitos T Colaboradores-Inductores/efectos de los fármacos , Linfocitos T Colaboradores-Inductores/inmunología , Transcriptoma , Linfopoyetina del Estroma Tímico
20.
BMJ ; 367: l5997, 2019 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-31628104
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...