Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(13)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37447611

RESUMEN

Polycaprolactone and poly-l-lactide-co-caprolactone are promising degradable biomaterials for many medical applications. Their mechanical properties, especially a low elastic modulus, make them particularly interesting for implantable devices and scaffolds that target soft tissues like the small intestine. However, the specific environment and mechanical loading in the intestinal lumen pose harsh boundary conditions on the design of these devices, and little is known about the degradation of those mechanical properties in small intestinal fluids. Here, we perform tensile tests on injection molded samples of both polymers during in vitro degradation of up to 70 days in human intestinal fluids. We report on yield stress, Young's modulus, elongation at break and viscoelastic parameters describing both materials at regular time steps during the degradation. These characteristics are bench-marked against degradation studies of the same materials in other media. As a result, we offer time dependent mechanical properties that can be readily used for the development of medical devices that operate in the small intestine.

2.
Sci Adv ; 6(49)2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33268359

RESUMEN

Cilia are hair-like organelles, present in arrays that collectively beat to generate flow. Given their small size and consequent low Reynolds numbers, asymmetric motions are necessary to create a net flow. Here, we developed an array of six soft robotic cilia, which are individually addressable, to both mimic nature's symmetry-breaking mechanisms and control asymmetries to study their influence on fluid propulsion. Our experimental tests are corroborated with fluid dynamics simulations, where we find a good agreement between both and show how the kymographs of the flow are related to the phase shift of the metachronal waves. Compared to synchronous beating, we report a 50% increase of net flow speed when cilia move in an antiplectic wave with phase shift of -π/3 and a decrease for symplectic waves. Furthermore, we observe the formation of traveling vortices in the direction of the wave when metachrony is applied.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA