Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 452: 131286, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37001209

RESUMEN

As a novel strategy, peracetic acid (PAA) based advanced oxidation processes (AOPs) are being used in micropollutant elimination due to their high oxidation and low toxicity. In this study, Co2Ca1Al1-LDO as a kind of layered double oxides (LDOs) was successfully synthesized, and it is the first time to apply Co2Ca1Al1-LDO for activating PAA. The Co2Ca1Al1-LDO/PAA system showed excellent removal efficiencies for various micropollutants with removal ratios ranging from 90.4% to 100% and k values from 0.087 min-1 to 0.298 min-1. In the degradation period, various reactive oxygen species (ROS) are involved in the system, while organic radicals (R-O•) with a high concentration of 5.52 × 10-13 M are the dominant ROS in the contaminants degradation process. Compared to other ROS, R-O• had the largest contribution ratio (more than 85%) to pollutant degradation. Further analysis demonstrated that C1, C2, C3, C4, C5, C6 and N11 concentrated on the aniline group of SMX are the main attack sites based on the density functional theory (DFT) results, which is consistent with the degradation products. The toxicity of contaminants was obviously reduced after removing in this system. Furthermore, Co2Ca1Al1-LDO showed good reusability and stability, and Co2Ca1Al1-LDO/PAA system had excellent removal ability in actual water bodies containing inorganic anions, showing good application potential. Importantly, this study explored the feasibility of applying LDO catalysts in PAA-based AOPs for micropollutants elimination, providing new insights for subsequent research.

2.
Proc Natl Acad Sci U S A ; 117(49): 30966-30972, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33229548

RESUMEN

Organic Fenton-like catalysis has been recently developed for water purification, but redox-active compounds have to be ex situ added as oxidant activators, causing secondary pollution problem. Electrochemical oxidation is widely used for pollutant degradation, but suffers from severe electrode fouling caused by high-resistance polymeric intermediates. Herein, we develop an in situ organic Fenton-like catalysis by using the redox-active polymeric intermediates, e.g., benzoquinone, hydroquinone, and quinhydrone, generated in electrochemical pollutant oxidation as H2O2 activators. By taking phenol as a target pollutant, we demonstrate that the in situ organic Fenton-like catalysis not only improves pollutant degradation, but also refreshes working electrode with a better catalytic stability. Both 1O2 nonradical and ·OH radical are generated in the anodic phenol conversion in the in situ organic Fenton-like catalysis. Our findings might provide a new opportunity to develop a simple, efficient, and cost-effective strategy for electrochemical water purification.


Asunto(s)
Electroquímica , Peróxido de Hidrógeno/química , Hierro/química , Compuestos Orgánicos/química , Polímeros/química , Purificación del Agua , Catálisis , Electrodos , Fluorescencia , Radical Hidroxilo/análisis , Fenoles/química , Superóxidos/análisis
3.
ACS Nano ; 14(8): 10438-10451, 2020 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-32701259

RESUMEN

Rechargeable batteries are promising platforms for sustainable development of energy conversion and storage technologies. Highly efficient multifunctional electrodes based on bimetallic sulfides for rechargeable batteries are extremely desirable but still challenging to tailor with controllable phase and structure. Here, we report a colloidal strategy to fabricate FeCo-based bimetallic sulfides on reduced graphene oxide (rGO), which are expected to display highly efficient oxygen electrocatalysis and sodium storage performances. Specifically, as-screened FeCo8S8 nanosheets (NSs) on rGO originating from suitable tailoring of the Co9S8 matrix with Fe at the atomic level exhibited a very low potential difference (0.77 V) at 10 mA cm-2 and negligible voltage loss after 200 cycles as an air electrode for Zn-air batteries. For Na-ion batteries, FeCo8S8 NS/rGO demonstrated a superior high-rate capability (188 mAh g-1 at 20 A g-1) with long-term cycling stability. The bifunctional electrocatalytic property and sodium storage performance are attributed to not only the synergistic effect of Fe/Co but also the optimized catalytic activity and ion transport ability by the in situ rGO hybrid. This work demonstrates the potential applications of FeCo-based bimetallic sulfides as efficient electrode materials for both rechargeable Zn-air and Na-ion batteries.

4.
Anal Chem ; 92(14): 9629-9639, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32605362

RESUMEN

Photochemical oxidation is able to effectively regenerate the fouled electrode in electrochemical pollutant monitoring, while its regeneration capacity is limited by the surface-bound hydroxyl radical speciation with low activity and mobility, which is attributed to the dissociated water adsorption on hydrophilic metal oxides. In this work, fluorine-terminated {001}-exposed TiO2 single crystals (F-TiO2) are rationally designed to construct an Au-based electrochemical sensor (Au/F-TiO2) for dopamine (DA) detection in different matrices. The Au/F-TiO2 sensor exhibits an efficient and stable detection capacity in both environmental and biological samples. A superior photochemical regeneration capacity is obtained on the Au/F-TiO2 electrode with much reduced matrix effects under UV irradiation. Spectral observation, crystallographic analysis, pollutant degradation performance, radical inhibition, and surface enhanced Raman scattering tests reveal that both the fluorine-terminated surface chemical features and the bulk-free radical speciation are mainly responsible for the superior photochemical regeneration capacity of the Au/F-TiO2 electrode. Even for the real biological samples, a stable electrochemical DA detection is also achieved on the Au/F-TiO2 sensor. Our work establishes a new approach to refine electrochemical sensors for stable monitoring and provides a robust photoactive electrode substrate with high efficiency and low cost for practical applications.


Asunto(s)
Dopaminérgicos/química , Dopamina/química , Técnicas Electroquímicas/métodos , Flúor/química , Titanio/química , Electrodos , Procesos Fotoquímicos
5.
J Hazard Mater ; 382: 121090, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31476718

RESUMEN

Fenton reaction is widely used for hazardous pollutant degradation. Reducing agents (RAs) have been proven to be efficient in promoting the generation of HO• in Fenton reaction by accelerating the redox cycle of Fe3+/Fe2+. However, the roles of different RAs in Fenton reaction remain unrevealed. In this work, the catalytic activity of three RAs, i.e., hydroxylamine (NH2OH), ascorbic acid (AA) and cysteine (Cys), on the degradation of benzoic acid (BA) and the hydroxyl radical formation in the Fenton-RAs system were investigated. Results show the catalytic performance of RAs in BA degradation by Fenton reaction followed an order of NH2OH > AA > Cys. Compared with the conventional Fenton system, the effective pH range in the Fenton-NH2OH system extended from 3.0 to 5.0, while the optimal pH in the Fenton-AA and Fenton-Cys systems ranged from 3.0 to 4.0. The Fenton-AA system exhibited a two-stage reaction toward BA degradation, which was different from the Fenton-NH2OH and Fenton-Cys systems. Furthermore, the dosing manner of AA was found to be a key factor governing its role in the Fenton-AA system. This observation suggests the different mechanisms behind the enhancement of the three RAs in Fenton system. Different from NH2OH and Cys, AA would inhibit the generation of HO•, especially at the fast stage of degradation process, where Fe3+ has not accumulated yet. In addition, the economic analysis using the electrical energy per order indicates Fenton-NH2OH system was economically feasible with the lowest energy input, compared to Fenton-AA and Fenton-Cys systems. These results are useful to better understand the roles of RAs in Fenton system, and also provide guidance about the selection and dosing manner of suitable RAs in the advanced oxidation processes.

6.
Environ Sci Technol ; 53(13): 7641-7652, 2019 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-31150211

RESUMEN

The electrode is the key in electrochemical process for water and wastewater treatment. Many nonstoichiometric metal oxides are active electrode materials but have poor stability under strong anodic polarization due to their susceptible nature of the oxygen vacancies on surface and subsurface as defective reactive sites. In this work, a novel photochemical protecting strategy is proposed to stabilize the defective reactive sites on the TiO2- x surface and subsurface for long-term anodic oxidation of pollutants. With this strategy, a novel photoassisted electrochemical system at low anodic bias is further constructed. Such a system exhibits a high protecting capacity at a low operation cost for electrochemical degradation of bisphenol A (BPA), a typical persistent organic pollutant. Its excellent photochemical protecting capacity is found to be mainly attributed to the mild non-band-gap excitation pathways on the defective TiO2- x electrode under both visible-light irradiation and moderate anodic polarization. Under real sunlight irradiation, a 20 run cyclic test for BPA degradation demonstrates the excellent performance and stability of the constructed system at low bias without significant oxygen evolution. Our work provides a new opportunity to utilize the defective and reactive TiO2- x for efficient, stable, and cost-effective electrochemical water treatment with the aid of its photo- and electrochemical bifunctional properties.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Catálisis , Dominio Catalítico , Titanio , Aguas Residuales
7.
Water Res ; 157: 30-39, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-30952006

RESUMEN

Bisphenol A (BPA) is a semi-persistent environmental endocrine disrupter and widely present in aqueous environments. Electrochemical detection is an effective method to monitor pollutants like BPA in aqueous environments. However, the electrode fouling from anodic polymeric products is one main barrier of electrochemical sensors for their practical applications. In this work, a renewable electrochemical sensor was rationally designed, constructed and tested for efficient BPA detection. The TiO2 anodic material was surface-engineered by inorganic-framework molecular imprinting sites with tailored morphological shape, exposed facet and crystal structure. This electrode could be activated mainly as an electrochemical catalyst and partially as a photochemical catalyst. The developed TiO2-based sensor exhibited a good detection reliability and cyclic stability for determining BPA in water samples, with an electrochemical signal decrease of less than 5.0% in 10-run cyclic tests. By virtue of the bi-functional properties of the tailored TiO2 anodic material, a unique photo-assisted electrochemical sensor was further developed, in which analyte digestion and analytical signal originated mainly from anodic conversion. Such a synergistic digesting mechanism distinguishes it from the reported electro-assisted photochemical TiO2 sensors. Our work provides a robust sensor for monitoring pollutants in aqueous environments and a new opportunity to develop renewable electrode materials with good reusability.


Asunto(s)
Contaminantes Químicos del Agua , Compuestos de Bencidrilo , Fenoles , Reproducibilidad de los Resultados
8.
Anal Chem ; 90(5): 3165-3173, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29461045

RESUMEN

Noble metals, nanostructured carbon, and their hybrids are widely used for electrochemical detection of persistent organic pollutants. However, despite of the rapid detection process and high accuracy, these materials generally suffer from high costs, metallic impurity, heterogeneity, irreversible adsorption and poor sensitivity. Herein, the high-energy {001}-exposed TiO2 single crystals with specific inorganic-framework molecular recognition ability was prepared as the electrode material to detect bisphenol A (BPA), a typical and widely present organic pollutant in the environment. The oxidation peak current was linearly correlated to the BPA concentration from 10.0 nM to 20.0 µM ( R2 = 0.9987), with a low detection limit of 3.0 nM (S/N = 3). Furthermore, it exhibited excellent discriminating ability, high anti-interference capacity, and good long-term stability. Its good performance for BPA detection in real environmental samples, including tap water, lake and river waters, domestic wastewater, and municipal sludge, was also demonstrated. This work extends the applications of TiO2 semiconductor and suggests that this material could be used as a highly active, stable, low-cost, and environmentally benign electrode material for electrochemical sensing.


Asunto(s)
Compuestos de Bencidrilo/análisis , Técnicas Electroquímicas/métodos , Fenoles/análisis , Titanio/química , Contaminantes Químicos del Agua/análisis , Conductividad Eléctrica , Técnicas Electroquímicas/instrumentación , Electrodos , Límite de Detección , Impresión Molecular/métodos , Aguas del Alcantarillado/análisis
9.
Environ Sci Technol ; 51(19): 11326-11335, 2017 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-28891634

RESUMEN

Electrochemical degradation of refractory pollutants at low bias before oxygen evolution exhibits high current efficiency and low energy consumption, but its severe electrode fouling largely limits practical applications. In this work, a new antifouling strategy was developed and validated for electrochemical pollutant degradation by photochemical oxidation on facet-tailored {001}-exposed TiO2 single crystals. Electrode fouling from anodic polymers at a low bias was greatly relieved by the free ·OH-mediated photocatalysis under UV irradiation, thus efficient and stable degradation of bisphenol A, a typical environmental endocrine disrupter, and treatment of landfill leachate were accomplished without remarkable oxygen evolution in synergistic photoassisted electrochemical system. Electrochemical and spectroscopic measurements indicated a clean electrode surface during cyclic pollutant degradation. Such a photochemical antifouling strategy for low-bias anodic pollutants degradation was mainly attributed to the improved electric conductivity and excellent electrochemical and photochemical activities of tailored TiO2 anodic material, whose unique properties originated from the favorable surface atomic and electronic structures of high-energy {001} polar facet and single-crystalline structure. Our work opens up a brand new approach to develop catalytic systems for efficient degradation of refractory contaminants in water and wastewater.


Asunto(s)
Titanio , Contaminantes Químicos del Agua , Purificación del Agua , Electrodos , Aguas Residuales
10.
Environ Sci Technol ; 50(10): 5234-42, 2016 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-27128346

RESUMEN

TiO2 is a typical semiconductor and has been extensively used as an effective photocatalyst for environmental pollution control. But it could not be used as an electrochemical reductive catalyst because of its low electric conductivity and electrocatalytic activity. In this work, however, we demonstrate that TiO2 can act as an excellent cathodic electrocatalyst when its crystal shape, exposed facet and oxygen-stoichiometry are finely tailored by the local geometric and electronic structures. The defect-engineered TiO2-x single crystals dominantly exposed by high-energy {001} facets exhibits a high cathodic activity and great stability for electrochemical reduction of nitrobenzene, a typical refractory pollutant with high toxicity in environment. The single crystalline structure, the high-energy {001} facet and the defective oxygen vacancy of the defect-engineered TiO2-x single crystals are found to be mainly responsible for their cathodic superiority. With the findings in this work, a more practical non-Pd cathodic electrocatalyst could be prepared and applied for electrocatalytic reduction of refractory pollutants in water and wastewater, and extend the promising applications of TiO2 in the fields of environmental science.


Asunto(s)
Nitrobencenos , Aguas Residuales/química , Catálisis , Electrodos , Oxígeno/química
11.
Water Res ; 92: 78-86, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26841231

RESUMEN

Photocatalyst plays a vital role in the photochemical water treatment. To improve the visible-light photoactivity of TiO2 for refractory pollutant degradation, CdS/TiO2 hybrids with different nanostructures have been prepared, but usually suffer from a low photocatalytic degradation efficiency and a rapid photocorrosion. In this work, we developed a synergistic ZnO/CdS/TiO2 hybrid, which could act as a robust and self-protected photocatalyst for water purification without additional sacrificial reagents. This was attributed to the two different junction mechanisms in one single hybrid. Photons were selectively adsorbed by ZnO and CdS, then, the electrons with a low reductive activity in ZnO recombined directly with the holes with a low oxidative activity in CdS, whereas the holes with a high oxidative activity in ZnO and the electrons with a high reductive activity in CdS were captured for catalytic reaction. The superiority of the novel ZnO/CdS/TiO2 hybrid over the traditional CdS/TiO2 hybrid in both photocatalytic activity and anti-photocorrosion capacity was demonstrated in the degradation of Atrazine and Rhodamine B, two typical refractory organic pollutants, and the treatment of real textile wastewater under solar light irradiation. The developed ZnO/CdS/TiO2 hybrid exhibited an excellent potential for the degradation of refractory pollutants, and provided a new way to advance intrinsically solar-susceptible catalyst for photochemical wastewater treatment.


Asunto(s)
Compuestos de Cadmio/química , Sulfuros/química , Luz Solar , Titanio/química , Contaminantes Químicos del Agua/efectos de la radiación , Óxido de Zinc/química , Atrazina/efectos de la radiación , Catálisis/efectos de la radiación , Electricidad , Cinética , Rodaminas/efectos de la radiación , Espectrometría por Rayos X , Textiles , Aguas Residuales/química
12.
Nat Commun ; 6: 8696, 2015 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-26493365

RESUMEN

The cathodic material plays an essential role in oxygen reduction reaction for energy conversion and storage systems. Titanium dioxide, as a semiconductor material, is usually not recognized as an efficient oxygen reduction electrocatalyst owning to its low conductivity and poor reactivity. Here we demonstrate that nano-structured titanium dioxide, self-doped by oxygen vacancies and selectively exposed with the high-energy {001} facets, exhibits a surprisingly competitive oxygen reduction activity, excellent durability and superior tolerance to methanol. Combining the electrochemical tests with density-functional calculations, we elucidate the defect-centred oxygen reduction reaction mechanism for the superiority of the reductive {001}-TiO2-x nanocrystals. Our findings may provide an opportunity to develop a simple, efficient, cost-effective and promising catalyst for oxygen reduction reaction in energy conversion and storage technologies.

13.
ACS Appl Mater Interfaces ; 7(36): 20349-59, 2015 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-26308282

RESUMEN

TiO2 is capable of directly utilizing solar energy for sustainable energy harvest and water purification. Facet-dependent performance of TiO2 has attracted enormous interests due to its tunable photocatalytic activity toward photoredox transformations, but information about the noble-metal-loaded TiO2 for its facet-dependent photocatalytic performance, especially in pollutant degradation systems, is limited. In this work, inspired by our previous theoretical calculations about the roles of the crystal surface in Pt-loaded TiO2 in its enhanced photocatalytic capacity, TiO2 nanocrystals with interspersed polyhedron nanostructures and coexposed (001) and (101) surfaces as a support of Pt nanoparticles are prepared in a simple and relatively green route. Also, their performance for photocatalytic degradation of nitrobenzene (NB), a model organic pollutant, is explored. The experimental results demonstrate that the NB photodegradation and photoconversion efficiencies are significantly enhanced by uniformly loading Pt nanoparticles on the crystal surfaces, but the Pt nanoparticles deposited on only the (101) surface have no contribution to the improved NB photodegradation. Furthermore, the liquid chromatography mass spectrometry results also show that NB photodegradation tends to proceed on the (001) surface of Pt/TiO2 for the generation of nitrophenol intermediates through the photooxidation pathway. This work provides a new route to design and construct advanced photocatalysts toward pollutant photoredox conversions and deepens our fundamental understanding about crystal surface engineering.

14.
ACS Appl Mater Interfaces ; 7(23): 12671-8, 2015 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-26013255

RESUMEN

Titania modified with nanosized metallic clusters is found to substantially enhance its photocatalytic capacity for renewable energy generation and environmental purification, but the underlying mechanism, especially the roles of crystal surface in noble-metal-loaded TiO2, remain unclear. In this work, such roles in the Pt-loaded anatase TiO2 for the photocatalytic conversion of nitrobenzene (NB), a model pollutant, are explored by first-principle calculations. The theoretical calculations reveal that the Pt-TiO2 complex has a higher catalytic activity toward NB conversion than pure Pt clusters, and the (001) facets of TiO2 in this complex tend to accumulate more positively charged holes and thus have a higher photocatalytic activity than the (101) facets. Furthermore, the thermodynamic and kinetic results also show that the Pt cluster loaded on the (001) surface of anatase TiO2 is favored for NB conversion in the photooxidation pathway. This work deepens our fundamental understanding on the evolution of molecule-photocatalyst interface and provides implications for designing and preparing photocatalysts.

15.
Phys Chem Chem Phys ; 16(42): 23003-11, 2014 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-25238285

RESUMEN

The ability of dissimilatory metal-reducing microorganisms (DMRM) to conduct extracellular electron transfer with conductive cellular components grants them great potential for bioenergy and environmental applications. Crystalline Fe(III) oxide, a type of widespread electron acceptor for DMRM in nature, can be excited by light for photocatalysis and microbial culture-mediated photocurrent production. However, the feasibility of direct electron transfer from living cells to light-excited Fe(III) oxides has not been well documented and the cellular physiology in this process has not been clarified. To resolve these problems, an electrochemical system composed of Geobacter sulfurreducens and hematite (α-Fe2O3) was constructed, and direct electron transfer from G. sulfurreducens cells to the light-excited α-Fe2O3 in the absence of soluble electron shuttles was observed. Further studies evidenced the efficient excitation of α-Fe2O3 and the dependence of photocurrent production on the biocatalytic activity. Light-induced electron transfer on the cell-α-Fe2O3 interface correlated linearly with the rates of microbial respiration and substrate consumption. In addition, the G. sulfurreducens cells were found to survive on light-excited α-Fe2O3. These results prove a direct mechanism behind the DMRM respiration driven by photo-induced charge separation in semiconductive acceptors and also imply new opportunities to design photo-bioelectronic devices with living cells as a catalyst.


Asunto(s)
Biocatálisis/efectos de la radiación , Compuestos Férricos/química , Compuestos Férricos/metabolismo , Geobacter/metabolismo , Geobacter/efectos de la radiación , Luz , Transporte de Electrón/efectos de la radiación , Geobacter/química , Geobacter/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...