Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 36(18): e2309844, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38227203

RESUMEN

Metal halide perovskite solar cells (PSCs) have garnered much attention in recent years. Despite the remarkable advancements in PSCs utilizing traditional metal electrodes, challenges such as stability concerns and elevated costs have necessitated the exploration of innovative electrode designs to facilitate industrial commercialization. Herein, a physically and chemically stable molybdenum (Mo) electrode is developed to fundamentally tackle the instability factors introduced by electrodes. The combined spatially resolved element analyses and theoretical study demonstrate the high diffusion barrier of Mo ions within the device. Structural and morphology characterization also reveals the negligible plastic deformation and halide-metal reaction during aging when Mo is in contact with perovskite (PVSK). The electrode/underlayer junction is further stabilized by a thin seed layer of titanium (Ti) to improve Mo film's uniformity and adhesion. Based on a corresponding p-i-n PSCs (ITO/PTAA/PVSK/C60/SnO2/ITO/Ti/Mo), the champion sample could deliver an efficiency of 22.25%, which is among the highest value for PSCs based on Mo electrodes. Meanwhile, the device shows negligible performance decay after 2000 h operation, and retains 91% of the initial value after 1300 h at 50-60 °C. In summary, the multilayer Mo electrode opens an effective avenue to all-round stable electrode design in high-performance PSCs.

2.
Adv Mater ; 35(45): e2305822, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37565713

RESUMEN

Wide-bandgap perovskites are promising absorbers for state-of-the-art tandem solar cells to feasibly surpass Shockley-Queisser limit with low cost. However, the commonly used mixed halide perovskites suffer from poor stability; particularly, photoinduced phase segregation. Electrospray deposition is developed to bridge the gap of growth rate between iodide and bromide components during film growth by spatially confining the anion diffusion and eliminating the kinetic difference, which universally improves the initial homogeneity of perovskite films regardless of device architectures. It thus promotes the efficiency and stability of corresponding solar cells based on wide-bandgap (1.68 eV) absorbers. Remarkable power conversion efficiencies (PCEs) of 21.44% and 20.77% are achieved in 0.08 cm2 and 1.0 cm2 devices, respectively. In addition, these devices maintain 90% of their initial PCE after 1550 h of stabilized power output (SPO) tracking upon one sun irradiation (LED) at room temperature.

3.
Nanomicro Lett ; 15(1): 175, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37428245

RESUMEN

To achieve high power conversion efficiency (PCE) and long-term stability of perovskite solar cells (PSCs), a hole transport layer (HTL) with persistently high conductivity, good moisture/oxygen barrier ability, and adequate passivation capability is important. To achieve enough conductivity and effective hole extraction, spiro-OMeTAD, one of the most frequently used HTL in optoelectronic devices, often needs chemical doping with a lithium compound (LiTFSI). However, the lithium salt dopant induces crystallization and has a negative impact on the performance and lifetime of the device due to its hygroscopic nature. Here, we provide an easy method for creating a gel by mixing a natural small molecule additive (thioctic acid, TA) with spiro-OMeTAD. We discover that gelation effectively improves the compactness of resultant HTL and prevents moisture and oxygen infiltration. Moreover, the gelation of HTL improves not only the conductivity of spiro-OMeTAD, but also the operational robustness of the devices in the atmospheric environment. In addition, TA passivates the perovskite defects and facilitates the charge transfer from the perovskite layer to HTL. As a consequence, the optimized PSCs based on the gelated HTL exhibit an improved PCE (22.52%) with excellent device stability.

4.
Adv Mater ; 35(30): e2301684, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37120149

RESUMEN

It is challenging to achieve long-term stability of perovskite solar cells due to the corrosion and diffusion of metal electrodes. Integration of compact barriers into devices has been recognized as an effective strategy to protect the perovskite absorber and electrode. However, the difficulty is to construct a thin layer of a few nanometers that can delay ion migration and impede chemical reactions simultaneously, in which the delicate microstructure design of a stable material plays an important role. Herein, ZrNx barrier films with high amorphization are introduced in p-i-n perovskite solar cells. To quantify the amorphous-crystalline (a-c) density, pattern recognition techniques are employed. It is found the decreasing a-c interface in an amorphous film leads to dense atom arrangement and uniform distribution of chemical potential, which retards the interdiffusion at the interface between ions and metal atoms and protect the electrodes from corrosion. The resultant solar cells exhibit improved operational stability, which retains 88% of initial efficiency after continuous maximum power point tracking under 1-Sun illumination at room temperature (25 °C) for 1500 h.

5.
Adv Mater ; 35(17): e2211257, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36753745

RESUMEN

Metal halide perovskites are promising as next-generation photovoltaic materials, but stability issues are still a huge obstacle to their commercialization. Here, the formation and evolution of cracks in perovskite films during thermal cycling, which affect their mechanical stability, are investigated. Compressive strain is employed to suppress cracks and delamination by in situ formed polymers with low elastic modulus during crystal growth. The resultant devices pass the thermal-cycling qualification (IEC61215:2016), retaining 95% of the initial power conversion efficiency (PCE) and compressive strain after 230 cycles. Meanwhile, the p-i-n devices deliver PCEs of 23.91% (0.0805 cm2 ) and 23.27% (1 cm2 ). The findings shed light on strain engineering with respect to their evolution, which enables mechanically stable perovskite solar cells.

6.
Science ; 378(6621): 747-754, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36395230

RESUMEN

The mixtures of cations and anions used in hybrid halide perovskites for high-performance solar cells often undergo element and phase segregation, which limits device lifetime. We adapted Schelling's model of segregation to study individual cation migration and found that the initial film inhomogeneity accelerates materials degradation. We fabricated perovskite films (FA1-xCsxPbI3; where FA is formamidinium) through the addition of selenophene, which led to homogeneous cation distribution that retarded cation aggregation during materials processing and device operation. The resultant devices achieved enhanced efficiency and retained >91% of their initial efficiency after 3190 hours at the maximum power point under 1 sun illumination. We also observe prolonged operational lifetime in devices with initially homogeneous FACsPb(Br0.13I0.87)3 absorbers.

7.
Adv Mater ; 34(26): e2201315, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35435280

RESUMEN

Perovskite/silicon tandem solar cells are promising to penetrate photovoltaic market. However, the wide-bandgap perovskite absorbers used in top-cell often suffer severe phase segregation under illumination, which restricts the operation lifetime of tandem solar cells. Here, a strain modulation strategy to fabricate light-stable perovskite/silicon tandem solar cells is reported. By employing adenosine triphosphate, the residual tensile strain in the wide-bandgap perovskite absorber is successfully converted to compressive strain, which mitigates light-induced ion migration and phase segregation. Based on the wide-bandgap perovskite with compressive strain, single-junction solar cells with the n-i-p layout yield a power conversion efficiency (PCE) of 20.53% with the smallest voltage deficits of 440 mV. These cells also maintain 83.60% of initial PCE after 2500 h operation at the maximum power point. Finally, these top cells are integrated with silicon bottom cells in a monolithic tandem device, which achieves a PCE of 26.95% and improved light stability at open-circuit.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...