Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 53(23): 9724-9731, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38814145

RESUMEN

Developing novel electrocatalysts for achieving high selectivity and faradaic efficiency in the carbon dioxide reduction reaction (CO2RR) poses a major challenge. In this study, a catalyst featuring a nitrogen-doped carbon shell-coated Ni nanoparticle structure is designed for efficient carbon dioxide (CO2) electroreduction to carbon monoxide (CO). The optimal Ni@NC-1000 catalyst exhibits remarkable CO faradaic efficiency (FECO) values exceeding 90% across a broad potential range of -0.55 to -0.9 V (vs. RHE), and attains the maximum FECO of 95.6% at -0.75 V (vs. RHE) in 0.5 M NaHCO3. This catalyst exhibits sustained carbon dioxide electroreduction activity with negligible decay after continuous electrolysis for 20 h. More encouragingly, a substantial current density of 200.3 mA cm-2 is achieved in a flow cell at -0.9 V (vs. RHE), reaching an industrial-level current density. In situ Fourier transform infrared spectroscopy and theoretical calculations demonstrate that its excellent catalytic performance is attributed to highly active pyrrolic nitrogen sites, promoting CO2 activation and significantly reducing the energy barrier for generating *COOH. To a considerable extent, this work presents an effective strategy for developing high-efficiency catalysts for electrochemical CO2 reduction across a wide potential window.

2.
Small ; 18(51): e2205547, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36328713

RESUMEN

Integrating the hydrogen evolution reaction (HER) and urea oxidation reaction (UOR) is an energy-saving approach for electrolytic H2 production. Here, hollow NiCoP nanoprisms are derived from Prussian blue analogues by a combined self-template coordination reaction and gas-phase phosphorization strategy. Benefiting from the strong electron interaction, unique hollow nanostructure, and enhanced mass/charge transfer, NiCoP nanoprisms display outstanding alkaline HER and UOR performance. Specifically, low potentials of -0.052, -0.115, and -0.159 V for HER and ultralow potentials of 1.30, 1.36, and 1.42 V for UOR at current densities of 10, 50, and 100 mA cm-2 are obtained. Moreover, in a urea-assisted water electrolysis system, NiCoP nanoprisms only require cell voltages of 1.36, 1.49, and 1.57 V to offer current densities of 10, 50, and 100 mA cm-2 , about 170, 180, and 200 mV less than the traditional water electrolysis. Theoretical calculations indicate the Co substitution in Ni2 P promotes the adsorption and dissociation of water molecules, optimizes the desorption energy of active hydrogen atoms, and enhances the adsorption of urea molecules, thus accelerating the kinetics of HER and UOR. This work facilitates the application of hollow bimetallic phosphides in electrochemical preparation of clean energy and provides a successful paradigm for urea-rich wastewater electrolysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...