Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biol Reprod ; 109(6): 799-811, 2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-37672213

RESUMEN

Galectins are a phylogenetically conserved family of soluble ß-galactoside binding proteins. There are 16 different of galectins, each with a specific function determined by its distinct distribution and spatial structure. Galectin-13, galectin-14, and galectin-16 are distinct from other galectin members in that they are primarily found in placental tissue. These galectins, also referred to as placental galectins, play critical roles in regulating pregnancy-associated processes, such as placenta formation and maternal immune tolerance to the embedded embryo. The unique structural characteristics and the inability to bind lactose of placental galectins have recently received significant attention. This review primarily examines the novel structural features of placental galectins, which distinguish them from the classic galectins. Furthermore, it explores the correlation between these structural features and the loss of ß-galactoside binding ability. In addition, the newly discovered functions of placental galectins in recent years are also summarized in our review. A detailed understanding of the roles of placental galectins may contribute to the discovery of new mechanisms causing numerous pregnancy diseases and enable the development of new diagnostic and therapeutic strategies for the treatment of these diseases, ultimately benefiting the health of mothers and offspring.


Asunto(s)
Galectinas , Placenta , Femenino , Embarazo , Humanos , Placenta/metabolismo , Galectinas/química , Galectinas/metabolismo , Galactósidos/química , Galactósidos/metabolismo
2.
Biomater Adv ; 135: 212746, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35929218

RESUMEN

Pectin-based drug delivery systems hold great potential for oral insulin delivery, since they possess excellent gelling property, good mucoadhesion and high stability in the gastrointestinal (GI) tract. However, lack of enterocyte targeting ability and premature drug release in the upper GI tract of the susceptible ionic-crosslinked pectin matrices are two major problems to be solved. To address these issues, we developed folic acid (FA)-modified pectin nanoparticles (INS/DFAN) as insulin delivery vehicles by a dual-crosslinking method using calcium ions and adipic dihydrazide (ADH) as crosslinkers. In vitro studies indicated insulin release behaviors of INS/DFAN depended on COOH/ADH molar ratio in the dual-crosslinking process. INS/DFAN effectively prevented premature insulin release in simulated GI fluids compared to ionic-crosslinked nanoparticles (INS/FAN). At an optimized COOH/ADH molar ratio, INS/DFAN with FA graft ratio of 18.2% exhibited a relatively small particle size, high encapsulation efficiency and excellent stability. Cellular uptake of INS/DFAN was FA graft ratio dependent when it was at/below 18.2%. Uptake mechanism and intestinal distribution studies demonstrated the enhanced insulin transepithelial transport by INS/DFAN via FA carrier-mediated transport pathway. In vivo studies revealed that orally-administered INS/DFAN produced a significant reduction in blood glucose levels and further improved insulin bioavailability in type I diabetic rats compared to INS/FAN. Taken together, the combination of dual crosslinking and FA modification is an effective strategy to develop pectin nano-vehicles for enhanced oral insulin delivery.


Asunto(s)
Diabetes Mellitus Experimental , Nanopartículas , Administración Oral , Animales , Diabetes Mellitus Experimental/tratamiento farmacológico , Portadores de Fármacos/uso terapéutico , Ácido Fólico/uso terapéutico , Insulina , Insulina Regular Humana/uso terapéutico , Pectinas/uso terapéutico , Ratas
3.
J Ginseng Res ; 44(5): 717-724, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32913401

RESUMEN

BACKGROUND: Malignant arrhythmias require drug therapy. However, most of the currently available antiarrhythmic drugs have significant side effects. Ginsenoside Rg2 exhibits excellent cardioprotective effects and appears to be a promising candidate for cardiovascular drug development. So far, the oral toxicity and antiarrhythmic effects of Rg2 have not been evaluated. METHODS: Acute oral toxicity of Rg2 was assessed by the Limit Test method in mice. Subchronic oral toxicity was determined by repeated dose 28-day toxicity study in rats. Antiarrhythmic activities of Rg2 were evaluated in calcium chloride-induced arrhythmic rats. Antiarrhythmic mechanism of Rg2 was investigated in arrhythmic rats and H9c2 cardiomyocytes. RESULTS: The results of toxicity studies indicated that Rg2 exhibited no single-dose (10 g/kg) acute oral toxicity. And 28-day repeated dose treatment with Rg2 (1.75, 3.5 and 5 g/kg/d) demonstrated minimal, if any, subchronic toxicity. Serum biochemical examination showed that total cholesterol in the high-dose cohort was dramatically decreased, whereas prothrombin time was increased at Day 28, suggesting that Rg2 might regulate lipid metabolism and have a potential anticoagulant effect. Moreover, pretreatment with Rg2 showed antiarrhythmic effects on the rat model of calcium chloride induced arrhythmia, in terms of the reduced duration time, mortality, and incidence of malignant arrhythmias. The antiarrhythmic mechanism of Rg2 might be the inhibition of calcium influx through L-type calcium channels by suppressing the phosphorylation of Ca2+/calmodulin-dependent protein kinase II. CONCLUSION: Our findings support the development of Rg2 as a promising antiarrhythmic drug with fewer side effects for clinical use.

4.
Biomed Mater ; 15(2): 025007, 2020 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-31645028

RESUMEN

Its hydrophilic property and poor water resistance prevent the application of starch in electrospun nanofibers for biomedical applications. In this paper, we apply a periodate oxidation-adipic acid dihydrazide crosslinking strategy to electrospun starch nanofibers and develop a new nanofiber material with excellent mechanical strength, superior water resistance, and excellent cytocompatibility. The crosslinked starch nanofiber membranes exhibit a Young's modulus up to 2.65 MPa in the wet state, can maintain 91.0% of their initial mass after four weeks' incubation in simulated body fluid, and do not cause toxicity to L929 fibroblast cells. The control nanofibers prepared with a conventional glutaraldehyde crosslinking strategy show only a 60 kPa Young's modulus, retain only 31.9% of their initial mass after four weeks in simulated body fluid, and cause toxicity to cells. The crosslinked starch nanofibers with high mechanical strength, excellent water resistance and good biocompatibility are promising for biomedical applications.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Nanofibras/química , Almidón/química , Adipatos/química , Animales , Adhesión Celular , Proliferación Celular , Módulo de Elasticidad , Fibroblastos/metabolismo , Glutaral/química , Calor , Ratones , Microscopía Electrónica de Rastreo , Oxígeno/química , Ácido Peryódico/química , Espectroscopía Infrarroja por Transformada de Fourier , Estrés Mecánico , Resistencia a la Tracción , Viscosidad
5.
J Agric Food Chem ; 67(48): 13333-13343, 2019 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-31703480

RESUMEN

Fluoride (F) widely exists in the water and food. Recent studies reported that F induced testicular toxicity via inflammation reaction. This study was aimed to explore the mechanism of F-induced inflammation in testis. 100 healthy male mice (BALB/cJ strain) were randomly divided into five groups including: control, experimental autoimmune orchitis (EAO), and three F groups (25, 50, and 100 mg/L sodium fluoride (NaF)). After 150 d, the results showed a significant increase in testicular cytokines levels including of IL-17A, IL-6, IFN-γ, and TNF-α in NaF and EAO groups compared with control group. Interestingly, the presence of specific antisperm autoantibodies in antitesticular autoantibodies and the notable recruitment of immunocyte (T cells and dendritic cells) were also observed in NaF and EAO groups. In addition, findings showed that in NaF and EAO groups macrophages and T cells both significantly secreted IL-17A, and the protein and mRNA levels of cytokines (IL-6 and TGF-ß) were significantly increased. From these results, it can be concluded that autoimmune orchitis and IL-17A are implicated in F-induced testicular inflammation.


Asunto(s)
Enfermedades Autoinmunes/inducido químicamente , Enfermedades Autoinmunes/inmunología , Fluoruros/efectos adversos , Interleucina-17/inmunología , Orquitis/inmunología , Testículo/inmunología , Animales , Enfermedades Autoinmunes/genética , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Humanos , Interleucina-17/genética , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Orquitis/inducido químicamente , Orquitis/genética , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Testículo/efectos de los fármacos , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología
6.
Carbohydr Polym ; 215: 130-136, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30981337

RESUMEN

Neutral polysaccharides such as konjac glucomannan, starch and pullulan are abundant in nature and have unique property. Their nanofibers hold great potential for biomedicine, which however, are seldom applied in the field due to the lack of crosslinking method. In this work, we report a periodate oxidation - adipic acid dihydrazide (ADH) crosslinking strategy to prepare robust and biocompatible neutral polysaccharide nanofibers. Neutral polysaccharides with adjacent dihydroxyl groups are firstly partially oxidized with periodate to give dialdehyde polysaccharides, and their electrospun nanofibers are then crosslinked with ADH to form dihydrazone crosslinkers. The resulting crosslinked neutral polysaccharide nanofibers exhibit high water resistance and excellent mechanical properties because of the high reactivity of Schiff base crosslinking reaction. Moreover, the crosslinked neutral polysaccharide nanofibers show good biocompatibility due to the low toxicity of ADH. These robust and biocompatible neutral polysaccharide nanofibers are expected to seek extensive applications in a variety of biomedical fields.


Asunto(s)
Materiales Biocompatibles/química , Mananos/química , Nanofibras/química , Adipatos/química , Adipatos/toxicidad , Animales , Materiales Biocompatibles/toxicidad , Línea Celular Tumoral , Reactivos de Enlaces Cruzados/química , Mananos/toxicidad , Ratones , Nanofibras/toxicidad
7.
Biomacromolecules ; 19(2): 490-498, 2018 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-29257671

RESUMEN

Polysaccharides display poor cell adhesion due to the lack of cell binding domains. This severely limits their applications in regenerative medicine. This study reports novel cross-linked pectin nanofibers with dramatically enhanced cell adhesion. The nanofibers are prepared by at first oxidizing pectin with periodate to generate aldehyde groups and then cross-linking the nanofibers with adipic acid dihydrazide to covalently connect pectin macromolecular chains with adipic acid dihydrazone linkers. The linkers may act as cell binding domains. Compared with traditional Ca2+-cross-linked pectin nanofibers, the pectin nanofibers with high oxidation/cross-linking degree exhibit much enhanced cell adhesion capability. Moreover, the cross-linked pectin nanofibers exhibit excellent mechanical strength (with Young's modulus ∼10 MPa) and much enhanced body degradability (degrade completely in 3 weeks or longer time). The combination of excellent cell adhesion capability, mechanical strength, and body degradability suggests that the cross-linked pectin nanofibers are promising candidates for in vivo applications such as tissue engineering and wound healing. This cross-linking strategy may also be used to improve the cell adhesion capability of other polysaccharide materials.


Asunto(s)
Adipatos/química , Reactivos de Enlaces Cruzados/química , Nanofibras/química , Pectinas , Animales , Adhesión Celular/efectos de los fármacos , Línea Celular , Ratones , Pectinas/química , Pectinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...