Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(20): 12830-12844, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38709246

RESUMEN

The immunosuppressive microenvironment of cervical cancer significantly hampers the effectiveness of immunotherapy. Herein, PEGylated manganese-doped calcium sulfide nanoparticles (MCSP) were developed to effectively enhance the antitumor immune response of the cervical cancer through gas-amplified metalloimmunotherapy with dual activation of pyroptosis and STING pathway. The bioactive MCSP exhibited the ability to rapidly release Ca2+, Mn2+, and H2S in response to the tumor microenvironment. H2S disrupted the calcium buffer system of cancer cells by interfering with the oxidative phosphorylation pathway, leading to calcium overload-triggered pyroptosis. On the other hand, H2S-mediated mitochondrial dysfunction further promoted the release of mitochondrial DNA (mtDNA), enhancing the activation effect of Mn2+ on the cGAS-STING signaling axis and thereby activating immunosuppressed dendritic cells. The released H2S acted as an important synergist between Mn2+ and Ca2+ by modulating dual signaling mechanisms to bridge innate and adaptive immune responses. The combination of MCSP NPs and PD-1 immunotherapy achieved synergistic antitumor effects and effectively inhibited tumor growth. This study reveals the potential collaboration between H2S gas therapy and metalloimmunotherapy and provides an idea for the design of nanoimmunomodulators for rational regulation of the immunosuppressive tumor microenvironment.


Asunto(s)
Inmunoterapia , Proteínas de la Membrana , Piroptosis , Microambiente Tumoral , Neoplasias del Cuello Uterino , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología , Neoplasias del Cuello Uterino/inmunología , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/terapia , Femenino , Humanos , Ratones , Animales , Piroptosis/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Manganeso/química , Manganeso/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Nanopartículas/química , Transducción de Señal/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Calcio/metabolismo , Ratones Endogámicos BALB C , Ensayos de Selección de Medicamentos Antitumorales
3.
ACS Nano ; 18(15): 10495-10508, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38556991

RESUMEN

Sonodynamic therapy (SDT) has promising application prospects in tumor therapy. However, SDT does not eradicate metastatic tumors. Herein, Cu-substituted ZnAl ternary layered double hydroxide nanosheets (ZCA NSs) were developed as both sonosensitizers and copper nanocarriers for synergistic SDT/cuproptosis cancer therapy. An optimized electronic structure more conducive to the sonodynamic process was obtained from ZCA NSs via the Jahn-Teller effect induced by the introduction of Cu2+, and the synthesized ZCA NSs regulated the intricate tumor microenvironment (TME) by depleting endogenous glutathione (GSH) to amplify oxidative stress for further enhanced SDT performance. Furthermore, cuproptosis was evoked by intracellular overload of Cu2+ and amplified by SDT, leading to irreversible proteotoxicity. In vitro results showed that such synergetic SDT/cuproptosis triggered immunogenic cell death (ICD) and promoted the maturation of dendritic cells (DCs). Furthermore, the as-synthesized ZCA NS-mediated SDT/cuproptosis thoroughly eradicated the in vivo solid tumors and simultaneously elicited antitumor immunity to suppress lung and liver metastasis. Overall, this work established a nanoplatform for synergistic SDT/cuproptosis with a satisfactory antitumor immunity.


Asunto(s)
Neoplasias Hepáticas , Neoplasias , Terapia por Ultrasonido , Humanos , Cobre , Electrónica , Glutatión , Hidróxidos , Neoplasias Hepáticas/tratamiento farmacológico , Inmunidad , Línea Celular Tumoral , Neoplasias/tratamiento farmacológico , Microambiente Tumoral
4.
Exploration (Beijing) ; 3(5): 20220001, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37933288

RESUMEN

Metal-based nanomaterials have attracted broad attention recently due to their unique biological physical and chemical properties after entering tumor cells, namely biological effects. In particular, the abilities of Ca2+ to modulate T cell receptors activation, K+ to regulate stem cell differentiation, Mn2+ to activate the STING pathway, and Fe2+/3+ to induce tumor ferroptosis and enhance catalytic therapy, make the metal ions and metal-based nanomaterials play crucial roles in the cancer treatments. Therefore, due to the superior advantages of metal-based nanomaterials and the characteristics of the tumor microenvironment, we will summarize the recent progress of the anti-tumor biological effects of metal-based nanomaterials. Based on the different effects of metal-based nanomaterials on tumor cells, this review mainly focuses on the following five aspects: (1) metal-enhanced radiotherapy sensitization, (2) metal-enhanced catalytic therapy, (3) metal-enhanced ferroptosis, (4) metal-enhanced pyroptosis, and (5) metal-enhanced immunotherapy. At the same time, the shortcomings of the biological effects of metal-based nanomaterials on tumor therapy are also discussed, and the future research directions have been prospected. The highlights of promising biosafety, potent efficacy on biological effects for tumor therapy, and the in-depth various biological effects mechanism studies of metal-based nanomaterials provide novel ideas for the future biological application of the nanomaterials.

5.
J Glaucoma ; 32(12): 999-1005, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37853676

RESUMEN

PRCIS: This study demonstrates the efficacy and safety of once-daily 0.002% omidenepag isopropyl (OMDI) in patients with primary open angle glaucoma (POAG) or ocular hypertension (OHT) who do not respond or respond poorly to latanoprost. PURPOSE: The purpose of this study was to evaluate the intraocular pressure (IOP)-lowering efficacy and safety of OMDI in latanoprost low/nonresponders with POAG or OHT. MATERIALS AND METHODS: Phase 3, nonrandomized, 2-phase, open-label, multicenter study (NCT03697811) in the United States. Key inclusion criteria included individuals aged 18 years or above, POAG or OHT diagnosis in both eyes, IOP ≥22 mm Hg in ≥1 eye, and ≤34 mm Hg in both eyes at all time points. Overall, 107 patients were enrolled; 104 completed treatment. Included a screening period (≤35-day washout period and 8-week latanoprost run-in period) and a 3-month treatment period comprising one drop of OMDI 0.002% once daily in both eyes. The primary study endpoint was changed from baseline in the mean diurnal (MD) IOP at month 3. Safety endpoints included incidence of adverse events, serious adverse events, and adverse drug reactions. RESULTS: At baseline (visit 4), 75 (70.1%) patients had POAG, 32 (29.9%) had OHT, and 68 (63.6%) had prior use of prostaglandin/prostaglandin analogs (37.4% of whom used latanoprost). The mean (SD) baseline MD IOP was 23.34 mm Hg (2.12). The mean (SD) 3-month (visit 7) MD IOP change from baseline (following latanoprost run-in period and OMDI treatment period) was an additional decrease of 2.96 mm Hg (2.83) ( P <0.0001). No significant safety issues were reported during OMDI treatment. CONCLUSIONS: These data demonstrate OMDI efficacy and safety in latanoprost low/nonresponders with POAG or OHT, suggesting OMDI is a treatment option in the patient population in this study.


Asunto(s)
Glaucoma de Ángulo Abierto , Glaucoma , Glicina , Hipertensión Ocular , Pirazoles , Piridinas , Humanos , Glaucoma/tratamiento farmacológico , Glaucoma de Ángulo Abierto/diagnóstico , Glaucoma de Ángulo Abierto/tratamiento farmacológico , Glicina/análogos & derivados , Presión Intraocular , Latanoprost/farmacología , Soluciones Oftálmicas , Resultado del Tratamiento
6.
ACS Nano ; 17(21): 21539-21552, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37843009

RESUMEN

The occurrence and development of inflammatory bowel diseases (IBDs) are inextricably linked to the excessive production of reactive oxygen species (ROS). Thus, there is an urgent need to develop innovative tactics to combat IBDs and scavenge excess ROS from affected areas. Herein, silicon hydrogen nanoparticles (SiH NPs) with ROS-scavenging ability were prepared by etching Si nanowires (NWs) with hydrogen fluoride (HF) to alleviate the symptoms associated with IBD by orally targeting the inflamed colonic sites. The strong reductive Si-H bonds showed excellent stability in the gastric and intestinal fluids, which exhibited efficient ROS-scavenging effects to protect cells from high oxidative stress-induced death. After oral delivery, the negatively charged SiH NPs were specifically adsorbed to the positively charged inflammatory epithelial tissues of the colon for an extended period via electrostatic interactions to prolong the colonic residence time. SiH NPs exhibited significant preventive and therapeutic effects in dextran sodium sulfate-induced prophylactic and therapeutic mouse models by inhibiting colonic shortening, reducing the secretion of pro-inflammatory cytokines, regulating macrophage polarization, and protecting the colonic barrier. As determined using 16S rDNA high-throughput sequencing, the oral administration of SiH NPs treatment led to changes in the abundance of the intestinal microbiome, which improved the bacterial diversity and restored the relative abundance of beneficial bacteria after the inflamed colon. Overall, our findings highlight the broad application of SiH-based anti-inflammatory drugs in the treatment of IBD and other inflammatory diseases.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Nanoestructuras , Silicio , Animales , Ratones , Antiinflamatorios/uso terapéutico , Bacterias , Colon , Modelos Animales de Enfermedad , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Especies Reactivas de Oxígeno , Silicio/farmacología , Silicio/uso terapéutico
7.
ACS Nano ; 17(17): 17105-17121, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37603593

RESUMEN

Bioactive inorganic nanomaterials and the biological effects of metal ions have attracted extensive attention in tumor therapy in recent years. Vanadium (V), as a typical bioactive metal element, regulates a variety of biological functions. However, its role in antitumor therapy remains to be revealed. Herein, biodegradable vanadium disulfide (VS2) nanosheets (NSs) were prepared as a responsive gas donor and bioactive V source for activating cancer immunotherapy in combination with immune-checkpoint blockade therapy. After PEGylation, VS2-PEG exhibited efficient glutathione (GSH) depletion and GSH-activated hydrogen sulfide (H2S) release. Exogenous H2S caused lysosome escape and reduced adenosine triphosphate (ATP) synthesis in tumor cells by interfering with the mitochondrial membrane potential and inducing acidosis. In addition, VS2-PEG degraded into high-valent vanadate, leading to Na+/K+ ATPase inhibition, potassium efflux, and interleukin (IL)-1ß production. Together with further induction of ferroptosis and immunogenic cell death, a strong antitumor immune response was stimulated by reversing the immunosuppressive tumor microenvironment. Moreover, the combined treatment of VS2-PEG and α-PD-1 amplified antitumor therapy, significantly suppressed tumor growth, and further elicited robust immunity to effectively defeat tumors. This work highlights the biological effects of vanadium for application in cancer treatment.


Asunto(s)
Neoplasias , Vanadatos , Vanadatos/farmacología , Vanadatos/uso terapéutico , Inhibidores de Puntos de Control Inmunológico , Vanadio , Inmunoterapia , Glutatión , Neoplasias/tratamiento farmacológico
8.
Small ; 19(45): e2303438, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37420331

RESUMEN

Tumor immunotherapy is an important tool in oncology treatment. However, only a small percentage of patients have an effective immune response to tumor immunotherapy due to the poor infiltration of pro-inflammatory immune cells in immune "cold" tumors and an immunosuppressive network in the tumor microenvironment (TME). Ferroptosis has been widely used as a novel strategy to enhance tumor immunotherapy. Herein, manganese molybdate nanoparticles (MnMoOx NPs) depleted the highly expressed glutathione (GSH) in tumors and inhibited glutathione peroxidase 4 (GPX4) expression, thus triggering ferroptosis, inducing immune cell death (ICD), further releasing damage-associated molecular patterns (DAMPs), and enhancing tumor immunotherapy. Furthermore, MnMoOx NPs can efficiently suppress tumors, promote the maturation of dendritic cells (DCs), infiltrate T cells, and reverse the immunosuppressive microenvironment, making the tumor an immune "hot" tumor. Combination with an immune checkpoint inhibitor (ICI) (α-PD-L1) further enhanced the anti-tumor effect and inhibited metastases as well. The work provides a new idea for the development of nonferrous inducers of ferroptosis to enhance cancer immunotherapy.


Asunto(s)
Ferroptosis , Nanopartículas , Neoplasias , Humanos , Manganeso , Inmunoterapia , Glutatión , Microambiente Tumoral , Línea Celular Tumoral
9.
Chem Soc Rev ; 52(6): 2031-2081, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36633202

RESUMEN

Bioactive materials are a special class of biomaterials that can react in vivo to induce a biological response or regulate biological functions, thus achieving a better curative effect than traditional inert biomaterials. For cancer theranostics, compared with organic or polymer nanomaterials, inorganic nanomaterials possess unique physical and chemical properties, have stronger mechanical stability on the basis of maintaining certain bioactivity, and are easy to be compounded with various carriers (polymer carriers, biological carriers, etc.), so as to achieve specific antitumor efficacy. After entering the nanoscale, due to the nano-size effect, high specific surface area and special nanostructures, inorganic nanomaterials exhibit unique biological effects, which significantly influence the interaction with biological organisms. Therefore, the research and applications of bioactive inorganic nanomaterials in cancer theranostics have attracted wide attention. In this review, we mainly summarize the recent progress of bioactive inorganic nanomaterials in cancer theranostics, and also introduce the definition, synthesis and modification strategies of bioactive inorganic nanomaterials. Thereafter, the applications of bioactive inorganic nanomaterials in tumor imaging and antitumor therapy, including tumor microenvironment (TME) regulation, catalytic therapy, gas therapy, regulatory cell death and immunotherapy, are discussed. Finally, the biosafety and challenges of bioactive inorganic nanomaterials are also mentioned, and their future development opportunities are prospected. This review highlights the bioapplication of bioactive inorganic nanomaterials.


Asunto(s)
Nanoestructuras , Neoplasias , Humanos , Medicina de Precisión , Nanomedicina Teranóstica/métodos , Nanoestructuras/uso terapéutico , Nanoestructuras/química , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Materiales Biocompatibles , Polímeros/química , Microambiente Tumoral
10.
Molecules ; 28(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36615623

RESUMEN

It is highly attractive to design pseudocapacitive metal oxides as anodes for supercapacitors (SCs). However, as they have poor conductivity and lack active sites, they generally exhibit an unsatisfied capacitance under high current density. Herein, polypyrrole-coated low-crystallinity Fe2O3 supported on carbon cloth (D-Fe2O3@PPy/CC) was prepared by chemical reduction and electrodeposition methods. The low-crystallinity Fe2O3 nanorod achieved using a NaBH4 treatment offered more active sites and enhanced the Faradaic reaction in surface or near-surface regions. The construction of a PPy layer gave more charge storage at the Fe2O3/PPy interface, favoring the limitation of the volume effect derived from Na+ transfer in the bulk phase. Consequently, D-Fe2O3@PPy/CC displayed enhanced capacitance and stability. In 1 M Na2SO4, it showed a specific capacitance of 615 mF cm-2 (640 F g-1) at 1 mA cm-2 and still retained 79.3% of its initial capacitance at 10 mA cm-2 after 5000 cycles. The design of low-crystallinity metal oxides and polymer nanocomposites is expected to be widely applicable for the development of state-of-the-art electrodes, thus opening new avenues for energy storage.

11.
Biomaterials ; 291: 121904, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36403323

RESUMEN

Oxidative stress and mitochondrial damage are the main mechanisms of ischemia-reperfusion injury in ischemic stroke. Herein, cerium oxide nanoparticles with powerful free radical scavenging ability were used as carriers to load dl-3-n-butylphthalide (NBP-CeO2 NPs) for the combined treatment of ischemic stroke. NBP-CeO2 NPs could eliminate reactive oxygen species (ROS) in mouse brain microvascular endothelial cells and hippocampal neurons after oxygen-glucose deprivation/reoxygenation (OGD/R), and also save mitochondrial membrane potential, morphology, and function, thus alleviating the in vitro blood brain barrier (BBB) disruption and neuronal apoptosis. In the middle cerebral artery embolization/recanalization (MCAO/R) mouse model, the NBP-CeO2 NPs also possessed superior ROS scavenging ability, protected mitochondria, and preserved BBB integrity, thereby reducing cerebral infarction and cerebral edema and inhibiting neuroinflammation and neuronal apoptosis. The long-term neurobehavioral tests indicated that the NBP-CeO2 NPs significantly improved sensorimotor function and spatial learning ability by promoting angiogenesis after ischemic stroke. Therefore, the NBP-CeO2 NPs provided a novel therapeutic approach for ischemic stroke by combining antioxidant and neurovascular repair abilities, highlighting its wide application in ischemia-reperfusion injury.


Asunto(s)
Accidente Cerebrovascular Isquémico , Nanopartículas , Daño por Reperfusión , Animales , Ratones , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Especies Reactivas de Oxígeno , Células Endoteliales , Daño por Reperfusión/tratamiento farmacológico
12.
ACS Nano ; 16(7): 10979-10993, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35723442

RESUMEN

Sonodynamic therapy (SDT) has garnered extensive attention as a noninvasive treatment for deep tumors. Furthermore, imiquimod (R837), an FDA-approved toll-like receptor 7 agonist, is commonly used in clinical settings as an immune adjuvant. We prepared an activatable sonodynamic sensitizer platform (MR) based on glutathione-sensitive disulfide bonds linking Leu-MB, the reduced form of methylene blue (MB), and R837 to achieve efficient combinatory SDT and immunotherapy for tumors without harming normal tissues. We also used the amphiphilic polymer C18PMH-PEG to create self-assembled MB-R837-PEG (MRP) nanoparticles for immunosonodynamic therapy (iSDT). iSDT is a cancer treatment that combines activatable SDT and immunotherapy. Our iSDT demonstrated an excellent sonodynamic effect only at the tumor site, demonstrating high specificity in killing tumor cells when compared to SDT reported in the literature. The iSDT improves its tumor-killing effect by inducing an immune response, which is accomplished by secreted immune adjuvants in the tumor site. MRP was selectively activated by glutathione in the tumor microenvironment to release MB and R837, exhibiting excellent antitumor sonodynamic and immune responses. In addition, when combined with an α-PD-L1 antibody for immune checkpoint blockade, this therapy effectively inhibited tumor metastasis. Furthermore, mice treated with iSDT and α-PD-L1 antibody did not develop tumors even after tumor reinoculation, indicating that long-term immune memory was achieved. The concept of sonodynamic sensitizer preparation as a next-generation iSDT based on a noninvasive synergistic therapeutic modality applicable in the near future is presented in this study.


Asunto(s)
Imiquimod , Nanopartículas , Animales , Ratones , Adyuvantes Inmunológicos/farmacología , Adyuvantes Inmunológicos/uso terapéutico , Antígeno B7-H1 , Línea Celular Tumoral , Glutatión , Imiquimod/farmacología , Inmunoterapia , Nanopartículas/química
13.
J Biol Chem ; 295(18): 6151-6164, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32161114

RESUMEN

S-Palmitoylation is a reversible post-translational lipid modification that dynamically regulates protein functions. Voltage-gated sodium channels are subjected to S-palmitoylation and exhibit altered functions in different S-palmitoylation states. Our aim was to investigate whether and how S-palmitoylation regulates Nav1.6 channel function and to identify S-palmitoylation sites that can potentially be pharmacologically targeted. Acyl-biotin exchange assay showed that Nav1.6 is modified by S-palmitoylation in the mouse brain and in a Nav1.6 stable HEK 293 cell line. Using whole-cell voltage clamp, we discovered that enhancing S-palmitoylation with palmitic acid increases Nav1.6 current, whereas blocking S-palmitoylation with 2-bromopalmitate reduces Nav1.6 current and shifts the steady-state inactivation in the hyperpolarizing direction. Three S-palmitoylation sites (Cys1169, Cys1170, and Cys1978) were identified. These sites differentially modulate distinct Nav1.6 properties. Interestingly, Cys1978 is exclusive to Nav1.6 among all Nav isoforms and is evolutionally conserved in Nav1.6 among most species. Cys1978S-palmitoylation regulates current amplitude uniquely in Nav1.6. Furthermore, we showed that eliminating S-palmitoylation at specific sites alters Nav1.6-mediated excitability in dorsal root ganglion neurons. Therefore, our study reveals S-palmitoylation as a potential isoform-specific mechanism to modulate Nav activity and neuronal excitability in physiological and diseased conditions.


Asunto(s)
Lipoilación , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Neuronas/citología , Secuencia de Aminoácidos , Fenómenos Electrofisiológicos , Ganglios Espinales/citología , Células HEK293 , Humanos , Cinética , Canal de Sodio Activado por Voltaje NAV1.6/química
14.
J Neurosci ; 39(8): 1539-1550, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30617209

RESUMEN

Neuropathic pain is a significant public health challenge, yet the underlying mechanisms remain poorly understood. Painful small fiber neuropathy (SFN) may be caused by gain-of-function mutations in Nav1.8, a sodium channel subtype predominantly expressed in peripheral nociceptive neurons. However, it is not clear how Nav1.8 disease mutations induce sensory neuron hyperexcitability. Here we studied two mutations in Nav1.8 associated with hypersensitive sensory neurons: G1662S reported in painful SFN; and T790A, which underlies increased pain behaviors in the Possum transgenic mouse strain. We show that, in male DRG neurons, these mutations, which impair inactivation, significantly increase TTX-resistant resurgent sodium currents mediated by Nav1.8. The G1662S mutation doubled resurgent currents, and the T790A mutation increased them fourfold. These unusual currents are typically evoked during the repolarization phase of action potentials. We show that the T790A mutation greatly enhances DRG neuron excitability by reducing current threshold and increasing firing frequency. Interestingly, the mutation endows DRG neurons with multiple early afterdepolarizations and leads to substantial prolongation of action potential duration. In DRG neurons, siRNA knockdown of sodium channel ß4 subunits fails to significantly alter T790A current density but reduces TTX-resistant resurgent currents by 56%. Furthermore, DRG neurons expressing T790A channels exhibited reduced excitability with fewer early afterdepolarizations and narrower action potentials after ß4 knockdown. Together, our data demonstrate that open-channel block of TTX-resistant currents, enhanced by gain-of-function mutations in Nav1.8, can make major contributions to the hyperexcitability of nociceptive neurons, likely leading to altered sensory phenotypes including neuropathic pain in SFN.SIGNIFICANCE STATEMENT This work demonstrates that two disease mutations in the voltage-gated sodium channel Nav1.8 that induce nociceptor hyperexcitability increase resurgent currents. Nav1.8 is crucial for pain sensations. Because resurgent currents are evoked during action potential repolarization, they can be crucial regulators of action potential activity. Our data indicate that increased Nav1.8 resurgent currents in DRG neurons greatly prolong action potential duration and enhance repetitive firing. We propose that Nav1.8 open-channel block is a major factor in Nav1.8-associated pain mechanisms and that targeting the molecular mechanism underlying these unique resurgent currents represents a novel therapeutic target for the treatment of aberrant pain sensations.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.8/fisiología , Neuralgia/fisiopatología , Nocicepción/fisiología , Enfermedades del Sistema Nervioso Periférico/fisiopatología , Células Receptoras Sensoriales/fisiología , Sodio/metabolismo , Potenciales de Acción , Animales , Modelos Animales de Enfermedad , Mutación con Ganancia de Función , Humanos , Activación del Canal Iónico , Transporte Iónico , Masculino , Ratones , Ratones Mutantes Neurológicos , Ratones Transgénicos , Mutación Missense , Canal de Sodio Activado por Voltaje NAV1.8/genética , Neuralgia/etiología , Técnicas de Placa-Clamp , Enfermedades del Sistema Nervioso Periférico/complicaciones , Mutación Puntual , Interferencia de ARN , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes , Células Receptoras Sensoriales/metabolismo , Tetrodotoxina/farmacología
15.
Handb Exp Pharmacol ; 246: 101-124, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29071507

RESUMEN

Voltage-gated sodium channels (VGSCs) are critical determinants of excitability. The properties of VGSCs are thought to be tightly controlled. However, VGSCs are also subjected to extensive modifications. Multiple posttranslational modifications that covalently modify VGSCs in neurons and muscle have been identified. These include, but are not limited to, phosphorylation, ubiquitination, palmitoylation, nitrosylation, glycosylation, and SUMOylation. Posttranslational modifications of VGSCs can have profound impact on cellular excitability, contributing to normal and abnormal physiology. Despite four decades of research, the complexity of VGSC modulation is still being determined. While some modifications have similar effects on the various VGSC isoforms, others have isoform-specific interactions. In addition, while much has been learned about how individual modifications can impact VGSC function, there is still more to be learned about how different modifications can interact. Here we review what is known about VGSC posttranslational modifications with a focus on the breadth and complexity of the regulatory mechanisms that impact VGSC properties.


Asunto(s)
Procesamiento Proteico-Postraduccional , Canales de Sodio Activados por Voltaje/metabolismo , Animales , Glicosilación , Humanos , Fosforilación , Especies Reactivas de Oxígeno/metabolismo , Sumoilación , Ubiquitinación
16.
Nat Commun ; 7: 12035, 2016 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-27337590

RESUMEN

Cardiac voltage-gated sodium channels (Nav1.5) play an essential role in regulating cardiac electric activity by initiating and propagating action potentials in the heart. Altered Nav1.5 function is associated with multiple cardiac diseases including long-QT3 and Brugada syndrome. Here, we show that Nav1.5 is subject to palmitoylation, a reversible post-translational lipid modification. Palmitoylation increases channel availability and late sodium current activity, leading to enhanced cardiac excitability and prolonged action potential duration. In contrast, blocking palmitoylation increases closed-state channel inactivation and reduces myocyte excitability. We identify four cysteines as possible Nav1.5 palmitoylation substrates. A mutation of one of these is associated with cardiac arrhythmia (C981F), induces a significant enhancement of channel closed-state inactivation and ablates sensitivity to depalmitoylation. Our data indicate that alterations in palmitoylation can substantially control Nav1.5 function and cardiac excitability and this form of post-translational modification is likely an important contributor to acquired and congenital arrhythmias.


Asunto(s)
Arritmias Cardíacas/metabolismo , Activación del Canal Iónico/fisiología , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Potenciales de Acción , Química Clic , Células HEK293 , Corazón , Humanos , Lipoilación , Mutagénesis Sitio-Dirigida , Miocitos Cardíacos , Canal de Sodio Activado por Voltaje NAV1.5/genética , Técnicas de Placa-Clamp
17.
Breast Cancer Res Treat ; 133(1): 99-109, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-21814747

RESUMEN

To improve the treatment of breast cancer, there has been a need for alternative aromatase inhibitors (AIs) that bring about adequate aromatase inhibition, while limiting side effects. Since two tamoxifen metabolites have been documented as AIs, we tested a wide range of tamoxifen metabolites on aromatase in order to better understand structural interactions with aromatase and constructed structure-function relationships as a first step toward the development of novel inhibitors. The ability of ten tamoxifen metabolites to inhibit recombinant aromatase (CYP19) was tested using microsomal incubations. The selectivity of the most potent aromatase inhibitor identified, norendoxifen, was characterized by studying its ability to inhibit CYP450 enzymes important in clinical drug-drug interactions, including CYP2B6, 2C9, 2C19, 2D6, and 3A. Computerized molecular docking with the X-ray crystallographic structure of aromatase was used to describe the detailed biochemical interactions involved. The inhibitory potency order of the tested compounds was as follows: norendoxifen ≫ 4,4'-dihydroxy-tamoxifen > endoxifen > N-desmethyl-tamoxifen, N-desmethyl-4'-hydroxy-tamoxifen, tamoxifen-N-oxide, 4'-hydroxy-tamoxifen, N-desmethyl-droloxifene > 4-hydroxy-tamoxifen, tamoxifen. Norendoxifen inhibited recombinant aromatase via a competitive mechanism with a K ( i ) of 35 nM. Norendoxifen inhibited placental aromatase with an IC(50) of 90 nM, while it inhibited human liver CYP2C9 and CYP3A with IC(50) values of 990 and 908 nM, respectively. Inhibition of human liver CYP2C19 by norendoxifen appeared even weaker. No substantial inhibition of CYP2B6 and CYP2D6 by norendoxifen was observed. These data suggest that multiple metabolites of tamoxifen may contribute to its action in the treatment of breast cancer via aromatase inhibition. Most of all, norendoxifen may be able to serve as a potent and selective lead compound in the development of improved therapeutic agents. The range of structures tested in this study and their pharmacologic potencies provide a reasonable pharmacophore upon which to build novel AIs.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores de la Aromatasa/farmacología , Aromatasa/química , Tamoxifeno/análogos & derivados , Antineoplásicos/química , Inhibidores de la Aromatasa/química , Sitios de Unión , Neoplasias de la Mama , Dominio Catalítico , Simulación por Computador , Descubrimiento de Drogas , Femenino , Humanos , Isoenzimas/química , Cinética , Letrozol , Microsomas/efectos de los fármacos , Microsomas/enzimología , Modelos Moleculares , Nitrilos/química , Nitrilos/farmacología , Tamoxifeno/química , Tamoxifeno/farmacología , Testosterona/metabolismo , Termodinámica , Triazoles/química , Triazoles/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...