Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 276(Pt 1): 133764, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38992529

RESUMEN

In the present study, activated carbon (AC), activated carbon/hydroxyapatite (AC/HAp), and carboxymethyl cellulose/activated carbon/hydroxyapatite (CMC/AC/HAp) composite adsorbents were prepared to remediation of methylene blue (MB) from water media. The pyrolysis method used the Pine cone as a natural precursor to synthesize AC. FTIR, XRD, Raman, BET, TEM, and SEM-Dot mapping techniques were applied to characterize synthesized adsorbents. Experimental results demonstrated that the maximum removal efficiency of AC, AC/HAp, and CMC/AC/HAp adsorbents under optimum conditions of pH 8, adsorbent dose 1 g/L, contact time 60 min, initial concentration 10 mg/L, and temperature 25 °C was computed to be 98.75, 98.86, and 98.93 %, respectively. Kinetic and equilibrium data were well-fitted with pseudo-second-order and Langmuir models, respectively. The maximum monolayer adsorption capacity of AC, AC/HAp, and CMC/AC/HAp was determined to be 40, 44.248, and 43.86 mg/g, respectively. FTIR results showed that hydrogen bonding and electrostatic interactions are the main mechanisms of the adsorption process. Results of the thermodynamic study showed that the adsorption process is spontaneous and exothermic. Finally, AC, AC/HAp, and CMC/AC/HAp composite adsorbents can be used as promising adsorbents for the remediation of MB from wastewater.

2.
Environ Res ; : 119428, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38897437

RESUMEN

Cationic synthetic dyes are one of the hazards in aqueous solutions that can affect the health of humans and living organisms. In the current work, polyacrylamide (PAM)-g-gelatin hydrogel and modified PAM-g-gelatin hydrogel using activated carbon of Luffa cylindrica (ACL) and ACL/Mg-Fe LDH were applied to eliminate crystal violet (CV), a cationic dye, from water media. The hydrogels were synthesized using free radical polymerization approach, and the hydrogels were characterized using FTIR, XRD, TGA-DTG, BET, SEM, and EDX-Map. The surface area of ACL, ACL/Mg-Fe LDH, PAM-g-gelatin, PAM-g-gelatin/ACL, and PAM-g-gelatin/ACL/Mg-Fe LDH were 99.71, 141.99, 0.74, 1.47, and 1.65 m2/g, respectively, which shows that the presence of ACL and ACL/Mg-Fe LDH improved the area of the hydrogels. The maximum abatement of CV using PAM-g-gelatin (92.81%), PAM-g-gelatin/ACL (95.71%), and PAM-g-gelatin/ACL/Mg-Fe LDH (98.25%) was obtained at pH=9, temperature 25 °C, 10 mg/L CV, 60 min time, and adsorber dose of 2 g/L (for PAM-g-gelatin) and 1.5 g/L (other samples). The value of thermodynamic factors confirmed that the abatement process is exothermic and spontaneous. The kinetics data followed the pseudo-second kinetic (PSO) model. The Langmuir isotherm model had a more remarkable ability to describe the equilibrium data. The maximum adsorption capacity for PAM-g-gelatin, PAM-g-gelatin/ACL, and PAM-g-gelatin/ACL/Mg-Fe LDH was determined 35.45, 39.865, and 44.952 mg/g, respectively. Generally, the studied hydrogels can eliminate dyes from wastewater and be used as effective adsorbers.

3.
Int J Biol Macromol ; 259(Pt 2): 129263, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38191117

RESUMEN

In the present study, starch/zeolitic imidazole framework-67 (ZIF-67) modified magnetic montmorillonite nanocomposite adsorbent to remove tetracycline (TC) as an emerging antibiotic-based contaminant from aqueous media. The surface properties of the adsorbents were investigated using FTIR, XRD, SEM, EDX-Map, XPS, TEM, BET, and VSM analysis. The specific surface area of MMT, St/MMT-MnFe2O4, and St/MMT-MnFe2O4-ZIF-67 magnetic nanocomposite samples were found to be 15.63, 20.54, and 588.41 m2/g, respectively. The influence of pH, adsorbent amount, initial TC concentration, temperature, contact time, and coexisting ions on TC elimination was explored in a batch adsorption system. The kinetic and equilibrium data were well matched with the pseudo-second-order and Langmuir isotherm models, respectively. The maximum monolayer adsorption capacities of TC were obtained to be 40.24, 66.1, and 135.2 mg/g by MMT, St/MMT-MnFe2O4, and St/MMT-MnFe2O4-ZIF-67 magnetic nanocomposite adsorbents, respectively. Also, thermodynamic studies illustrated that the TC adsorption process is exothermic and spontaneous. Furthermore, the magnetic nanocomposite adsorbent St/MMT-MnFe2O4-ZIF-67 showed good reusability and could be recycled for up to five cycles. This excellent adsorption performance, coupled with the facile separation of the magnetic nanocomposite, gave St/MMT-MnFe2O4-ZIF-67 a high potential for TC removal from aqueous media.


Asunto(s)
Nanocompuestos , Contaminantes Químicos del Agua , Zeolitas , Bentonita , Zeolitas/química , Descontaminación , Tetraciclina , Antibacterianos , Agua/química , Adsorción , Nanocompuestos/química , Fenómenos Magnéticos , Imidazoles , Contaminantes Químicos del Agua/química , Cinética , Concentración de Iones de Hidrógeno
4.
Int J Biol Macromol ; 254(Pt 1): 127750, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38287592

RESUMEN

Existing Ni2+ heavy metal ions in an aqueous medium are highly hazardous for living organisms and humans. Therefore, designing low-cost adsorbents with enhanced effectiveness is essential for removing nickel ions to safeguard public health. In this study, a novel green nanocomposite hydrogel was synthesized through the free radical solution and bulk polymerization method, and its capability to remove divalent nickel ions from aqueous media was examined. The bionanocomposite hydrogel named as SA-g-poly(AAm)/HL-CoFe2O4 was produced by grafting polyacrylamide (AAm) onto sodium alginate (SA) in the presence of a magnetic composite recognized as HL-CoFe2O4, where HL represents hydrolyzed Luffa Cylindrica. By employing FT-IR, XRD, VSM, SEM, EDX-Map, BET, DLS, HPLC, and TGA techniques, morphological evaluation and characterization of the adsorbents were carried out. The performance of the adsorption process was studied under varying operational conditions including pH, temperature, contact duration, initial concentration of pollutant ions, and adsorbent dosage. HPLC analysis proved the non-toxic structure of the bionanocomposite hydrogel. The number of unreacted acrylamide monomers within the hydrogel matrix was measured at 20.82 mg/kg. The optimum conditions was discovered to be pH = 6, room temperature, adsorbent dosage of 1 of g.L-1, initial Ni2+ concentration of 10 mg.L-1, and contact time of 100 min, and the maximum adsorption efficiency at optimal state was calculated as 70.09, 90.25, and 93.83 % for SA-g-poly (AAm), SA-g-poly(AAm)/HL, and SA-g-poly(AAm)/HL-CoFe2O4 samples, respectively. Langmuir isotherm model was in good agreement with the experimental data and the maximum adsorption capacity of SA-g-poly(AAm), SA-g-poly(AAm)/HL, and SA-g-poly(AAm)/HL-CoFe2O4 samples was calculated to be 31.37, 43.15, and 45.19 mg.g-1, respectively. The adsorption process, according to kinetic studies, follows a pseudo-second-order kinetic model. Investigations on thermodynamics also demonstrated that the process is exothermic and spontaneous. Exploring the interference effect of co-existing ions showed that the adsorption efficiency has decreased with concentration enhancement of Ca2+ and Na+ cations in aqueous medium. Furthermore, the adsorption/desorption assessments revealed that after 8 consecutive cycles, there had been no noticeable decline in the adsorption effectiveness. Finally, actual wastewater treatment outcomes demonstrated that the bionanocomposite hydrogel successfully removes heavy metal pollutants from shipbuilding industry effluent. Therefore, the findings revealed that the newly fabricated bionanocomposite hydrogel is an efficient, cost-effective, easy-separable, and green adsorbent that could be potentially utilized to remove divalent nickel ions from wastewater.


Asunto(s)
Resinas Acrílicas , Luffa , Metales Pesados , Contaminantes Químicos del Agua , Humanos , Hidrogeles , Níquel/análisis , Alginatos , Espectroscopía Infrarroja por Transformada de Fourier , Adsorción , Cinética , Agua , Iones/química , Acrilamidas , Contaminantes Químicos del Agua/química , Concentración de Iones de Hidrógeno
5.
J Mech Behav Biomed Mater ; 150: 106263, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38039775

RESUMEN

One of the most common systems for bone tissue engineering is polymeric scaffolds. However, the low mechanical properties of polymeric scaffolds, considering the properties required for bone replacement tissue, are the main challenge for researchers in this field. For bone tissue engineering, this research prepared nanocomposite scaffolds based on polyvinyl alcohol-chitosan containing modified clay and hydroxyapatite (HAp). HAp used in these 3D scaffolds was synthesized from a chicken femur, and Cloisite 30B clay nanoparticles were modified by graphene oxide and Fe3O4 nanoparticles to strengthen their mechanical properties. Sample characteristics were determined using FT-IR, XRD, SEM, TGA, swelling rate, laboratory degradation, and biological and mechanical properties. These analyses showed that 2% of modified clay (C30B/GO/Fe3O4, CGF) inside the nanocomposite scaffold increased the compressive strength 23 times compared to the pristine polymer scaffold. Also, adding HAp particles and modified clay simultaneously increased the mineralization on the surface of the scaffolds. Final nanocomposite scaffolds were found to have a compressive strength of 9.31 MPa, a porosity of 75 %, and a porosity size of 50 nm and were in the range of cancellous bone. The final swelling amount is 1790 %, which is the amount that is Favorable for bone scaffold. Finally, the analysis results to determine the samples' toxicity showed that none of the prepared scaffolds were toxic and showed good cell viability.


Asunto(s)
Quitosano , Nanocompuestos , Ingeniería de Tejidos/métodos , Durapatita , Andamios del Tejido , Alcohol Polivinílico , Arcilla , Espectroscopía Infrarroja por Transformada de Fourier , Porosidad , Fenómenos Magnéticos
6.
Int J Biol Macromol ; 222(Pt B): 2083-2097, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36228810

RESUMEN

In the present work, carboxymethyl cellulose (CMC) was used to develop hydrogels as adsorbents for wastewater treatment applications due to its surface functionality and modifiable characteristics. Hydrogels (Hyd) were synthesized by grafting copolymers of acrylic acid (AA) and itaconic acid (IA) onto the CMC backbone by free radical polymerization method in order to remediate Fuchsin from aqueous solution. The presence of CMC in copolymer hydrogel of AA and IA (Poly(AA-co-IA)) up to 14.29 wt% enhances equilibrium swelling and removal efficiency. Different novel nanocomposite hydrogel samples were prepared by varying weight percentages of carbon black (CB) nanoparticles in the range of 0 to 12.5 wt%. The addition of CB up to 5 wt% enhanced the swelling and removal efficiency of the Hyd. Brunauer-Emmett-Teller (BET) test gave the surface area of 0.615, and 0.890 m2/g for Hyd and Hyd/CB, respectively, indicating that incorporation of CB led to a significant increase in Hyd surface area. The Maximum removal efficiency of Fuchsin under the optimum conditions was obtained to be 83.33, 93.54, and 98.76 % for Poly(AA-co-IA), Hyd, and Hyd/CB, respectively. The kinetic study showed that the pseudo-second-order is the best-fitted model. Isotherm studies showed that equilibrium data have a good fitness with the Langmuir model with R2 of 0.978, 0.992, and 0.982 for Poly(AA-co-IA), Hyd, and Hyd/CB, respectively. The Langmuir model gave an adsorption capacity of 26.99, 31.6, and 33.75 mg/g for Poly(AA-co-IA), Hyd, and Hyd/CB, respectively. Also, the value of n and RL parameters demonstrated that the adsorption process is physical and favorable for adsorbents. The study of thermodynamic parameters illustrated that the adsorption of Fuchsin using adsorbents is a spontaneous, exothermic, and entropy-decreasing process. Regeneration study showed that CMC-based hydrogels have higher performance in ad(de)sorption cycles than Poly(AA-co-IA) and the addition of CB to the Hyd matrix enhances reusability. Overall, Hyd and Hyd/CB can be used as promising adsorbents for the remediation of Fuchsin due to high swelling and adsorption capability.


Asunto(s)
Carboximetilcelulosa de Sodio , Contaminantes Químicos del Agua , Colorantes de Rosanilina , Nanogeles , Hollín , Descontaminación , Adsorción , Hidrogeles , Cinética , Polímeros , Concentración de Iones de Hidrógeno
7.
Nanomaterials (Basel) ; 12(18)2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36144892

RESUMEN

A new nanocomposite based on Cloisite 30B clay modified with ZnO and Ag2O nanoparticles (Cloisite 30B/ZnO/Ag2O) was synthesized as an effective catalyst in the sono-photocatalytic process of crystal violet (CV) and methylene blue (MB) dyes simultaneously. The characteristics and catalytic activity of Cloisite 30B/ZnO/Ag2O nanocomposite were investigated under different conditions. The specific active surface for Cloisite 30B/ZnO/Ag2O nanocomposite was 18.29 m2/g. Additionally, the catalytic activity showed that Cloisite 30B/ZnO/Ag2O nanocomposite (CV: 99.21%, MB: 98.43%) compared to Cloisite 30B/Ag2O (CV: 85.38%, MB: 83.62%) and Ag2O (CV: 68.21%, MB: 66.41%) has more catalytic activity. The catalytic activity of Cloisite 30B/ZnO/Ag2O using the sono-photocatalytic process had the maximum efficiency (CV: 99.21%, MB: 98.43%) at pH 8, time of 50 min, amount of 40 mM H2O2, catalyst dose of 0.5 g/L, and the concentration of 'CV + MB' of 5 mg/L. The catalyst can be reused in the sono-photocatalytic process for up to six steps. According to the results, •OH and h+ were effective in the degradation of the desired dyes using the desired method. Data followed the pseudo-first-order kinetic model. The method used in this research is an efficient and promising method to remove dyes from wastewater.

8.
Environ Res ; 212(Pt C): 113349, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35490829

RESUMEN

The performance of poly(methacrylic acid-co-acrylamide)/Cloisite 30B nanocomposite (poly(MAA-co-AAm)/Cl30B) hydrogel to adsorb methylene blue (MB) dye from aqueous solutions was investigated and the adsorption efficiency was improved by incorporating Cloisite 30B nanoclays in the adsorbent structure. The hydrogels were analyzed using FTIR, XRD, TGA, and SEM analysis. The effect of adsorbent dose, temperature, initial dye concentration, contact time, and pH on the efficiency of the adsorption process was investigated. Adsorption efficiencies of 98.57 and 97.65% were obtained for poly(MAA-co-AAm)/Cl30B nanocomposite and poly(MAA-co-AAm) hydrogels, respectively. Kinetic study revealed that the adsorption process followed pseudo-first-order kinetic model and α-parameter values of 6.558 and 1.113 mg/g.min were obtained for poly(MAA-co-AAm)/Cl30B nanocomposite and poly(MAA-co-AAm) hydrogels, respectively indicating a higher ability of nanocomposite hydrogel in adsorbing MB-dye. In addition, the results of the intra-particle diffusion model showed that various mechanisms such as intra-particle diffusion and liquid film penetration are important in the adsorption. The Gibbs free energy parameter of adsorption process showed negative values of -256.52 and -84.071 J/mol.K for poly(MAA-co-AAm)/Cl30B nanocomposite and poly(MAA-co-AAm) hydrogels indicating spontaneous nature of the adsorption. The results of enthalpy and entropy showed that the adsorption process was exothermic and random collisions were reduced during the adsorption. The equilibrium data for the adsorption process using poly(MAA-co-AAm)/Cl30B nanocomposite and poly(MAA-co-AAm) hydrogels followed Freundlich and Langmuir isotherm models, respectively. The maximum adsorption capacity values of 32.83 and 21.92 mg/g were obtained for poly(MAA-co-AAm)/Cl30B nanocomposite and poly(MAA-co-AAm) hydrogels, respectively. Higher adsorption capacity of nanocomposite hydrogel was attributed to the presence of Cloisite 30B clay nanoparticles in its structure. In addition, results of RL, n, and E parameters showed that the adsorption process was performed optimally and physically.


Asunto(s)
Acrilamida , Azul de Metileno , Adsorción , Cationes , Hidrogeles/química , Concentración de Iones de Hidrógeno , Cinética , Metacrilatos , Nanogeles
9.
Environ Res ; 212(Pt B): 113201, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35413301

RESUMEN

Copolymer of acrylic acid (AA) and itaconic acid (IA) grafted onto sodium carboxymethyl cellulose hydrogel (CMC-g-poly (AA-co-IA)) was successfully synthesized as an adsorbent to remove safranin-O from wastewater. The swelling and removal efficiencies of CMC-g-poly (AA-co-IA) were enhanced by increasing IA/AA molar ratio as well as by incorporation of montmorillonite clay nano-sheets (MMT). The surface area of MMT, CMC-g-poly (AA-co-IA), and CMC-g-poly (AA-co-IA) samples was 15.632, 0.61452, and 0.66584 m2/g, respectively, indicating the effectiveness of MMT nano-sheets in improving hydrogel surface area. The maximum removal efficiency of CMC-g-poly (AA-co-IA)/MMT under optimum conditions i.e., pH of 8, initial concentration of 10 mg/L, adsorbent dose of 2 g/L, and contact time of 40 min was ascertained 99.78% using a response surface methodology-central composite design (RSM-CCD). Pseudo-second-order and Langmuir models giving the maximum monolayer adsorption capacity of 18.5185 mg/g and 19.1205 mg/g for CMC-g-poly (AA-co-IA) and CMC-g-poly (AA-co-IA)/MMT samples, respectively are the best-fitted models for kinetic and equilibrium data. Thermodynamically, safranin-O decontamination was spontaneous, exothermic, and entropy decreasing. Moreover, ad (de)sorption behavior study showed that CMC-g-poly (AA-co-IA)/MMT performance was not changed after multiple recovery steps. Therefore, CMC-g-poly (AA-co-IA)/MMT was considered as a highly potential adsorbent for safranin-O removal from wastewater.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Acrilatos , Adsorción , Carboximetilcelulosa de Sodio , Cationes , Hidrogeles , Concentración de Iones de Hidrógeno , Cinética , Nanogeles , Fenazinas , Succinatos
10.
Environ Res ; 212(Pt B): 113242, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35413302

RESUMEN

A novel magnetic adsorbent based on hydrolyzed Luffa Cylindrica (HLC) was synthesized through the chemical co-precipitation technique, and its potential was evaluated in the adsorptive elimination of divalent nickel ions from water medium. Morphological assessment and properties of the adsorbent were performed using FTIR, SEM, EDX, XRD, BET, and TEM techniques. The effect of pH, temperature, time and nickel concentration on the removal efficiency was studied, and pH = 6, room temperature (25 °C), contact time of 60 min, and Ni2+ ion concentration of 10 mg.L-1 were introduced as the optimal values. At optimal conditions, the removal efficiency of Ni2+ ions using HLC and HLC/CoFe2O4 magnetic composite was calculated as 96.38 and 99.13%, respectively. The adsorption process kinetic followed a pseudo-first-order model. Langmuir isotherm was suitable for modelling the experimental data of the Ni2+ adsorption. The maximum elimination capacity of HLC and HLC/CoFe2O4 samples was calculated as 42.75 and 44.42 mg g-1, respectively. Furthermore, thermodynamic investigations proved the spontaneous and exothermic nature of the process. The adsorption efficiency was decreased with increasing the content of Ca2+ and Na + cations in aqueous media. During reusability of the synthesized adsorbents, it was found that after 8 cycles, no significant decrease has occurred in the adsorption efficiency. In addition, real wastewater treatment results proved that HLC/CoFe2O4 magnetic composite has an excellent performance in removal of heavy metals pollutant from shipbuilding effluent.


Asunto(s)
Luffa , Nanopartículas , Contaminantes Químicos del Agua , Adsorción , Cobalto , Compuestos Férricos , Concentración de Iones de Hidrógeno , Iones , Cinética , Níquel , Termodinámica , Aguas Residuales/química , Agua , Contaminantes Químicos del Agua/análisis
11.
Environ Res ; 211: 113020, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35248568

RESUMEN

In the present study, banana peel waste was used as a suitable source for biochar production. The banana peel biochar (BPB) was modified using Fe3O4 magnetic and ZIF-67 nanoparticles. The modification of the BPB surface (4.70 m2/g) with Fe3O4 and Fe3O4/ZIF-67 significantly increased the specific surface of the nanocomposites (BPB/Fe3O4: 78.83 m2/g, and BPB/Fe3O4/ZIF-67: 1212.40 m2/g). The effect of pH, temperature, contact time, adsorbent dose, and concentration of Cd2+ on the efficiency of the Cd2+ adsorption was explored. Maximum adsorption efficiencies for BPB (97.76%), BPB/Fe3O4 (97.52%), and BPB/Fe3O4/ZIF-67 (99.14%) were obtained at pH 6, Cd2+ concentration of 10 mg/L, times of 80 min, 50 min, and 40 min, and adsorbent doses of 2 g/L, 1.5 g/L, and 1 g/L, respectively. Thermodynamic measurements indicated that the process is spontaneous and exothermic. The maximum capacity of Cd2+ adsorption using BPB, BPB/Fe3O4, and BPB/Fe3O4/ZIF-67 were obtained 20.63 mg/g, 30.33 mg/g, and 50.78 mg/g, respectively. The Cd2+ adsorption using magnetic nanocomposites followed the pseudo-first-order kinetic model. The results showed that studied adsorbents especially BPB/Fe3O4/ZIF-67 have a good ability to adsorb-desorb Cd2+ and clean an effluent containing pollutants.


Asunto(s)
Musa , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Cadmio , Carbón Orgánico , Concentración de Iones de Hidrógeno , Cinética , Agua , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos
12.
Chemosphere ; 296: 133978, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35176297

RESUMEN

The goal of this investigation was to develop a new magnetic nanocomposite of walnut shell ash (WSA)/starch/Fe3O4 to remove Cu (II) present in groundwater samples. The desired nanocomposites were successfully synthesized by the chemical deposition method. The specific active surface area for pristine WSA and WSA/starch/Fe3O4 magnetic nanocomposites was determined to be 8.1 and 52.6 m2/g, respectively. A central composite design for the response surface method was utilized to study the influence of pH, adsorbent quantity, initial content of Cu (II), temperature, and contact time. This method showed the success of the model to design process variables and to estimate the appropriate response. The P- and F-value determined for the quadratic polynomial model showed the significance and accuracy of the proposed model in examining experimental and predicted data with R2 and Adj.R2 of 0.994 and 0.991, respectively. The Cu adsorption onto WSA and WSA/starch/Fe3O4 obeyed the Freundlich and Langmuir models, respectively. The highest Cu (II) sorption capacity of 29.0 and 45.4 mg/g was attained for WSA and WSA/starch/Fe3O4, respectively. The free energy of Gibbs had a negative value at 25-45 °C indicating that the adsorption process is spontaneous. Also, negative ΔH values for copper adsorption showed that the processes are exothermic. The kinetic adsorption data for WSA and WSA/starch/Fe3O4 followed the pseudo-second order (PSO) model. The ability of the composite adsorbent to remove copper from three groundwater samples showed that it could be reused at least 3 times with appropriate efficiency, depending on the water quality.


Asunto(s)
Agua Subterránea , Juglans , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Cobre/química , Concentración de Iones de Hidrógeno , Iones , Cinética , Fenómenos Magnéticos , Almidón , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos
13.
Chemosphere ; 289: 133226, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34906530

RESUMEN

This investigation aimed to produce a new composited catalyst from a waste chalk powder, a waste generated by the construction industry, to produce biodiesel from sunflower oil. The waste chalk was modified by CoFe2O4 nanoparticles and K2CO3. The surface tests showed that the obtained catalyst has been successfully synthesized with desired surface properties. The surface areas of waste chalk, waste chalk/CoFe2O4, and waste chalk/CoFe2O4/K2CO3 were determined 20.8, 77.8, and 5.8 m2/g, respectively. This indicates that the waste chalk/CoFe2O4/K2CO3 catalyst has a lower surface area due to K2CO3 being placed on the catalyst. Results showed the efficiency of RSM-CCD (R2 = 0.992) compared to ANN (R2 = 0.974). It was shown that a contact time of 180 min, a temperature of 65 °C, a waste chalk/CoFe2O4/K2CO3 mass of 2 wt%, and methanol to oil mole ratio of 15:1 gave the highest efficiency (98.87%) of biodiesel production at the laboratory conditions. The kinetic results of the process showed the energy of activation and frequency factor of 11.8 kJ/mol and 0.78 min-1, respectively. Also, the values of ΔH°, ΔS°, and ΔG° at 65 °C was calculated to be 9010.7 J/mol, -256.3 J/mol and 95.7 kJ/mol, respectively, indicating that the biodiesel production process is endothermic requiring high energy for proceeding. The generated catalyst has an efficiency of over 90% up to 6 steps of reuse. The generated biodiesel was met most of the international standard levels.


Asunto(s)
Biocombustibles , Carbonato de Calcio , Catálisis , Esterificación , Aceites de Plantas , Aceite de Girasol
14.
Int J Biol Macromol ; 189: 432-442, 2021 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-34450143

RESUMEN

A new magnetic nanocomposite clinoptilolite (CLT)/Starch/CoFe2O4 was synthesized using co-precipitation method. The prepared magnetic composite powder was utilized for decontamination of methylene blue dye (MBD), methyl violet dye (MVD), and crystal violet dye (CVD) from water media. The BET analysis showed that CLT modification using starch and CoFe2O4 nanoparticles improved its specific surface and the amount of specific surface area for CLT, CoFe2O4, and CLT/Starch/CoFe2O4 powder was reported to be 18.82 m2.g-1, 151.4 m2.g-1, and 104.75 m2.g-1, respectively. Experimental results showed that pH 9 had a vital role in the adsorption process of all three types. Langmuir and Redlich-Petersen isotherm models were well fitted with experimental data. Also, the maximum adsorption capacity of CVD, MBD, and MVD to the desired composite was determined as 32.84 mg.g-1, 31.81 mg.g-1, and 31.15 mg.g-1, respectively. In addition, the kinetic data of the removal process followed a pseudo-first order (PFO) kinetic model. Negative thermodynamic parameters were indicated that the process is spontaneous and exothermic. Finally, ad(de)sorption experiments' results showed that the synthesized nanocomposite adsorbent has an excellent ability to adsorb cationic dyes after several consecutive cycles.


Asunto(s)
Cobalto/química , Colorantes/aislamiento & purificación , Compuestos Férricos/química , Fenómenos Magnéticos , Nanocompuestos/química , Almidón/química , Aguas Residuales/química , Contaminantes Químicos del Agua/aislamiento & purificación , Zeolitas/química , Cationes , Concentración de Iones de Hidrógeno , Cinética , Nanocompuestos/ultraestructura , Dinámicas no Lineales , Polvos , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura
15.
Chemosphere ; 282: 131088, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34118621

RESUMEN

In the present study, the activated carbon of lemon (ACL) was generated from Citrus limon wood waste and composited with Fe3O4 nanoparticles. The ACL/Fe3O4 magnetic composite was effectively used to eliminate Cd2+ from an aqueous solution. The active surface area values for ACL and ACL/Fe3O4 magnetic composite were 25.99 m2/g and 38.70 m2/g, respectively indicating the effectiveness of Fe3O4 nanoparticles in improving ACL active surface area. The response surface methodology with central composite design (RSM-CCD) was used to determine optimal values of pH, ACL/Fe3O4 dose, contact time, and Cd2+ concentration on the decontamination efficiency. The Langmuir and Freundlich isotherm models had more potential to describe the adsorption process using ACL and ACL/Fe3O4, respectively. The Langmuir-based adsorption capacity was obtained as 28.2 mg/g (ACL) and 39.6 mg/g (ACL/Fe3O4). A pseudo-second order (PSO) model was successfully applied to evaluate the adsorption process kinetic behavior. A higher value of α parameter for ACL/Fe3O4 (5.7 mg/g.min) than that of ACL (3.5 mg/g.min) indicated that the magnetic composite had a greater tendency to absorb Cd2+. In addition, the Weber-Morris model showed that various mechanisms such as intraparticle diffusion and boundary layer effects may have a role in the adsorption process. The study of ad(de)sorption behavior showed that the adsorbents have a good ability to adsorb Cd2+ and no significant change in their performance has been made up to 4 times of reuse. Our results showed that ACL modification using Fe3O4 nanoparticles improved the adsorption efficiency of ACL to remove Cd2+ from the aqueous solutions.


Asunto(s)
Citrus , Nanocompuestos , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Cadmio , Cinética , Fenómenos Magnéticos , Contaminantes Químicos del Agua/análisis , Madera/química
16.
J Dairy Sci ; 104(7): 7489-7499, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33985784

RESUMEN

In this study, the addition of microbial transglutaminase (MTG) and lipase in quark cheese samples was studied during storage (21 d). Four types of cheese were made using 3 different levels of MTG (T1, 0.1 g/L; T2, 0.2 g/L; T3, 0.3 g/L) and lipase (T1, 0.02 g/L; T2, 0.04 g/L; T3, 0.06 g/L), and one cheese was made without any treatment as a control sample. The physicochemical, textural, microbial, and sensory properties of cheese samples were monitored at 1, 7, 14, and 21 d of storage period. The results showed that the treated samples had higher proteolysis and lipolysis activities during storage than the control sample. The textural analysis indicated an insignificant increase in the hardness value of the enzyme-treated sample. Also, the sensory analysis exhibited that the treated samples had higher texture acceptability. The higher concentration of enzymes resulted in lower color, odor, taste, and overall acceptability, and higher microbial population. Finally, the addition of microbial MTG and lipase in preparation of quark cheese samples could be recommended for a short storage time.


Asunto(s)
Queso , Animales , Queso/análisis , Manipulación de Alimentos , Lipasa , Gusto , Transglutaminasas
17.
Molecules ; 26(8)2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-33924445

RESUMEN

Activated carbon prepared from lemon (Citrus limon) wood (ACL) and ACL/Fe3O4 magnetic nanocomposite were effectively used to remove the cationic dye of crystal violet (CV) from aqueous solutions. The results showed that Fe3O4 nanoparticles were successfully placed in the structure of ACL and the produced nanocomposites showed superior magnetic properties. It was found that pH was the most effective parameter in the CV dye adsorption and pH of 9 gave the maximum adsorption efficiency of 93.5% and 98.3% for ACL and ACL/Fe3O4, respectively. The Dubinin-Radushkevich (D-R) and Langmuir models were selected to investigate the CV dye adsorption equilibrium behavior for ACL and ACL/Fe3O4, respectively. A maximum adsorption capacity of 23.6 and 35.3 mg/g was obtained for ACL and ACL/Fe3O4, respectively indicating superior adsorption capacity of Fe3O4 nanoparticles. The kinetic data of the adsorption process followed the pseudo-second order (PSO) kinetic model, indicating that chemical mechanisms may have an effect on the CV dye adsorption. The negative values obtained for Gibb's free energy parameter (-20 < ΔG < 0 kJ/mol) showed that the adsorption process using both types of the adsorbents was physical. Moreover, the CV dye adsorption enthalpy (ΔH) values of -45.4 for ACL and -56.9 kJ/mol for ACL/Fe3O4 were obtained indicating that the adsorption process was exothermic. Overall, ACL and ACL/Fe3O4 magnetic nanocomposites provide a novel and effective type of adsorbents to remove CV dye from the aqueous solutions.

18.
Foods ; 10(4)2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33805504

RESUMEN

Development of polypropylene (PP) films incorporating antioxidant-antimicrobial agents can inhibit microbial growth and reduce undesirable deteriorating reactions and can preserve the quality of food. This study was aimed to use a combination of sorbic acid (SA), butylated hydroxyanisole (BHA), and butylated hydroxytoluene (BHT) to provide a synergistic effect at their reduced concentrations. A Combination of the additives was more effective in enhancing mechanical properties compared to their single state in film composition. The PP-2%SA-3%BHA film (T3) had the highest tensile strength (17.9 MPa) and the lowest elongation at break (7.1%) than other films. The fourier-transform infrared (FTIR) proposed physical mixing of active additives within PP-matrix. Scanning electron microscopy showed uniform dispersion of the additives in PP-2%SA-1%BHT-1%BHA film (T4) compared to others. BHT containing films decreased the storage and loss moduli leading to weakening of film viscoelastic behaviour and reducing film melting point. The prepared active films showed higher antioxidant activity than control PP-film following an order of T4 > T2 > T3 corresponding to DPPH radical scavenging values of 89.1, 83.4 and 79.1%, respectively. All active films inhibited gram-negative and gram-positive bacteria growth. The results of this study indicated that the prepared active films possess desirable mechanical, thermal, antioxidant and antimicrobial properties enabling their use in food packaging.

19.
J Hazard Mater ; 413: 125428, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33618268

RESUMEN

Hydroxyapatite (HAp) powder was produced from chicken (femur and beak) and fishbone wastes and used as a green adsorbent to decrease Cd2+ from aqueous media. The HAp powder was generated at 900 °C and characterized using physicochemical techniques. Chicken femur' HAp (16.72 m2/g) had a higher surface compared to chicken beak and fishbone ones. The solution pH was the most important parameter in removing Cd2+. The highest Cd2+ removal was achieved at pH 6, temperature of 25 °C, contact time of 80 min, and adsorbent mass of 2 g/L. The Cd2+ adsorption data fitted well with the quasi-second-order model in kinetics and the Freundlich model in isotherm. The highest adsorption capacity of Cd2+ using HAp-chicken femur, HAp-fish bone, and HAp-chicken beak was determined 22.94 mg/g, 21.54 mg/g, and 21.45 mg/g, respectively. The Cd2+ adsorption using HAp powder was a spontaneous and exothermic process and accidental collisions at the liquid-solid interface were reduced. The decrease of Cd2+ adsorption efficiency was not significant after multiple recovery steps of the desired powders. In addition to Cd2+, other parameters of real wastewater (shipbuilding industry) were reduced by the proposed adsorbents. The utilization of hydroxyapatite powder is expected to be a cheap and eco-friendly method for eliminating metals such as Cd2+.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Adsorción , Animales , Pico/química , Materiales Biocompatibles , Cadmio , Pollos , Durapatita , Fémur/química , Concentración de Iones de Hidrógeno , Cinética , Contaminantes Químicos del Agua/análisis
20.
Chemosphere ; 270: 129419, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33418222

RESUMEN

The synthesis of acrylamide bonded sodium alginate (AM-SA) hydrogel and acrylamide/graphene oxide bonded sodium alginate (AM-GO-SA) nanocomposite hydrogel was successfully performed using the free radical method. The AM-SA and AM-GO-SA hydrogels were applied as composited adsorbents in crystal violet (CV) dye removal. The adsorption process experiments were performed discontinuously and the acquired data showed that the efficiency is more dependent on pH than other factors. The C-O, CO, and CC groups were detected in the produced hydrogels. The amount of surface area was computed to be 44.689 m2/g, 0.0392 m2/g, and 6.983 m2/g for GO, AM-SA, and AM-GO-SA nanocomposite hydrogel, respectively. The results showed that the experimental data follow the Redlich-Peterson isotherm model. Also, the maximum adsorption capacity of monolayer for CV dye adsorption was determined using AM-SA hydrogel and AM-GO-SA nanocomposite hydrogel 62.07 mg/g and 100.30 mg/g, respectively. In addition, the parameters RL, n, and E showed that the processes of adsorption of CV dye using both types of adsorbents are physical and desirable. Thermodynamically, the CV elimination was exothermic and spontaneous. Besides, thermodynamic results showed that the adsorption process is better proceeding at low temperatures. The experimental data followed a pseudo- second- order (PSO) kinetic model. Also, the Elovich model showed that AM-GO-SA nanocomposite hydrogel has more ability to absorb CV dye. Therefore, according to the obtained results, it can be stated that the produced hydrogels are efficient and viable composited adsorbent in removing CV dye from aqueous solution.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Acrilamida , Adsorción , Alginatos , Violeta de Genciana , Grafito , Concentración de Iones de Hidrógeno , Nanogeles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA