Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ultramicroscopy ; 250: 113750, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37178606

RESUMEN

X-ray photoelectron diffraction (XPD) is a powerful technique that yields detailed structural information of solids and thin films that complements electronic structure measurements. Among the strongholds of XPD we can identify dopant sites, track structural phase transitions, and perform holographic reconstruction. High-resolution imaging of kll-distributions (momentum microscopy) presents a new approach to core-level photoemission. It yields full-field kx-ky XPD patterns with unprecedented acquisition speed and richness in details. Here, we show that beyond the pure diffraction information, XPD patterns exhibit pronounced circular dichroism in the angular distribution (CDAD) with asymmetries up to 80%, alongside with rapid variations on a small kll-scale (0.1 Å-1). Measurements with circularly-polarized hard X-rays (hν = 6 keV) for a number of core levels, including Si, Ge, Mo and W, prove that core-level CDAD is a general phenomenon that is independent of atomic number. The fine structure in CDAD is more pronounced compared to the corresponding intensity patterns. Additionally, they obey the same symmetry rules as found for atomic and molecular species, and valence bands. The CD is antisymmetric with respect to the mirror planes of the crystal, whose signatures are sharp zero lines. Calculations using both the Bloch-wave approach and one-step photoemission reveal the origin of the fine structure that represents the signature of Kikuchi diffraction. To disentangle the roles of photoexcitation and diffraction, XPD has been implemented into the Munich SPRKKR package to unify the one-step model of photoemission and multiple scattering theory.

2.
J Phys Condens Matter ; 35(23)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36940482

RESUMEN

We investigate the electronic structure of an antiferromagnetic Kondo lattice system CeAgAs2employing hardx-ray photoemission spectroscopy. CeAgAs2, an orthorhombic variant of HfCuSi2structure, exhibits antiferromagnetic ground state, Kondo like resistivity upturn and compensation of magnetic moments at low temperatures. The photoemission spectra obtained at different photon energies suggest termination of the cleaved surface at cis-trans-As layers. The depth-resolved data show significant surface-bulk differences in the As and Ce core level spectra. The As 2pbulk spectrum shows distinct two peaks corresponding to two different As layers. The peak at higher binding energy correspond to cis-trans-As layers and is weakly hybridized with the adjacent Ce layers. The As layers between Ce and Ag-layers possess close to trivalent configuration due to strong hybridization with the neighboring atoms and the corresponding feature appear at lower binding energy. Ce 3dcore level spectra show multiple features reflecting strong Ce-As hybridization and strong correlation. Intensef0peak is observed in the surface spectrum while it is insignificant in the bulk. In addition, we observe a features at binding energy lower than the well-screened feature indicating the presence of additional interactions. This feature becomes more intense in the bulk spectra suggesting it to be a bulk property. Increase in temperature leads to a spectral weight transfer to higher binding energies in the core level spectra and a depletion of spectral intensity at the Fermi level as expected in a Kondo material. These results reveal interesting surface-bulk differences, complex interplay of intra- and inter-layer covalency, and electron correlation in the electronic structure of this novel Kondo lattice system.

3.
Phys Rev Lett ; 126(17): 176403, 2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33988442

RESUMEN

Using angle-resolved photoelectron spectroscopy (ARPES), we investigate the surface electronic structure of the magnetic van der Waals compounds MnBi_{4}Te_{7} and MnBi_{6}Te_{10}, the n=1 and 2 members of a modular (Bi_{2}Te_{3})_{n}(MnBi_{2}Te_{4}) series, which have attracted recent interest as intrinsic magnetic topological insulators. Combining circular dichroic, spin-resolved and photon-energy-dependent ARPES measurements with calculations based on density functional theory, we unveil complex momentum-dependent orbital and spin textures in the surface electronic structure and disentangle topological from trivial surface bands. We find that the Dirac-cone dispersion of the topologial surface state is strongly perturbed by hybridization with valence-band states for Bi_{2}Te_{3}-terminated surfaces but remains preserved for MnBi_{2}Te_{4}-terminated surfaces. Our results firmly establish the topologically nontrivial nature of these magnetic van der Waals materials and indicate that the possibility of realizing a quantized anomalous Hall conductivity depends on surface termination.

4.
Nature ; 576(7787): 416-422, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31853084

RESUMEN

Magnetic topological insulators are narrow-gap semiconductor materials that combine non-trivial band topology and magnetic order1. Unlike their nonmagnetic counterparts, magnetic topological insulators may have some of the surfaces gapped, which enables a number of exotic phenomena that have potential applications in spintronics1, such as the quantum anomalous Hall effect2 and chiral Majorana fermions3. So far, magnetic topological insulators have only been created by means of doping nonmagnetic topological insulators with 3d transition-metal elements; however, such an approach leads to strongly inhomogeneous magnetic4 and electronic5 properties of these materials, restricting the observation of important effects to very low temperatures2,3. An intrinsic magnetic topological insulator-a stoichiometric well ordered magnetic compound-could be an ideal solution to these problems, but no such material has been observed so far. Here we predict by ab initio calculations and further confirm using various experimental techniques the realization of an antiferromagnetic topological insulator in the layered van der Waals compound MnBi2Te4. The antiferromagnetic ordering  that MnBi2Te4  shows makes it invariant with respect to the combination of the time-reversal and primitive-lattice translation symmetries, giving rise to a ℤ2 topological classification; ℤ2 = 1 for MnBi2Te4, confirming its topologically nontrivial nature. Our experiments indicate that the symmetry-breaking (0001) surface of MnBi2Te4 exhibits a large bandgap in the topological surface state. We expect this property to eventually enable the observation of a number of fundamental phenomena, among them quantized magnetoelectric coupling6-8 and axion electrodynamics9,10. Other exotic phenomena could become accessible at much higher temperatures than those reached so far, such as the quantum anomalous Hall effect2 and chiral Majorana fermions3.

5.
Phys Rev Lett ; 119(10): 106401, 2017 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-28949177

RESUMEN

A comprehensive understanding of spin-polarized photoemission is crucial for accessing the electronic structure of spin-orbit coupled materials. Yet, the impact of the final state in the photoemission process on the photoelectron spin has been difficult to assess in these systems. We present experiments for the spin-orbit split states in a Bi-Ag surface alloy showing that the alteration of the final state with energy may cause a complete reversal of the photoelectron spin polarization. We explain the effect on the basis of ab initio one-step photoemission theory and describe how it originates from linear dichroism in the angular distribution of photoelectrons. Our analysis shows that the modulated photoelectron spin polarization reflects the intrinsic spin density of the surface state being sampled differently depending on the final state, and it indicates linear dichroism as a natural probe of spin-orbit coupling at surfaces.

6.
Nat Mater ; 16(6): 615-621, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28272500

RESUMEN

We performed a full mapping of the bulk electronic structure including the Fermi surface and Fermi-velocity distribution vF(kF) of tungsten. The 4D spectral function ρ(EB; k) in the entire bulk Brillouin zone and 6 eV binding-energy (EB) interval was acquired in ∼3 h thanks to a new multidimensional photoemission data-recording technique (combining full-field k-microscopy with time-of-flight parallel energy recording) and the high brilliance of the soft X-rays used. A direct comparison of bulk and surface spectral functions (taken at low photon energies) reveals a time-reversal-invariant surface state in a local bandgap in the (110)-projected bulk band structure. The surface state connects hole and electron pockets that would otherwise be separated by an indirect local bandgap. We confirmed its Dirac-like spin texture by spin-filtered momentum imaging. The measured 4D data array enables extraction of the 3D dispersion of all bands, all energy isosurfaces, electron velocities, hole or electron conductivity, effective mass and inner potential by simple algorithms without approximations. The high-Z bcc metals with large spin-orbit-induced bandgaps are discussed as candidates for topologically non-trivial surface states.

7.
Phys Rev Lett ; 113(6): 067203, 2014 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-25148348

RESUMEN

The effect of electron confinement on the magnetocrystalline anisotropy of ultrathin bcc Fe films is explored by combining photoemission spectroscopy, x-ray magnetic circular dichroism, and magneto-optical Kerr effect measurements. Pronounced thickness-dependent variations in the magnetocrystalline anisotropy are ascribed to periodic changes in the density of states at the Fermi level, induced by quantization of d(xz), d(yz) out-of-plane orbitals. Our results reveal a direct correlation between quantum well states, the orbital magnetic moment, and the magnetocrystalline anisotropy.

8.
Phys Rev Lett ; 106(12): 127201, 2011 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-21517347

RESUMEN

The elementary surface excitations are studied by spin-polarized electron energy loss spectroscopy on a prototype oxide surface [an oxygen passivated Fe(001)-p(1×1) surface], where the various excitations coexist. For the first time, the surface phonons and magnons are measured simultaneously and are distinguished based on their different spin nature. The dispersion relation of all excitations is probed over the entire Brillouin zone. The different phonon modes observed in our experiment are described by means of ab initio calculations.

9.
Phys Rev Lett ; 102(17): 177206, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19518825

RESUMEN

We report the first observation of high wave vector magnon excitations in a ferromagnetic monolayer. Using spin-polarized electron energy loss spectroscopy, we observed the magnon dispersion in one atomic layer (ML) of Fe on W(110) at 120 K. The magnon energies are small in comparison to the bulk and surface Fe(110) excitations. We find an exchange parameter and magnetic anisotropy similar to that from static measurements. Our results are in sharp contrast to theoretical calculations, indicating that the present understanding of magnetism of the ML Fe requires considerable revision.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...