Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Opin Plant Biol ; 79: 102540, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643747

RESUMEN

The interplay between reactive oxygen species (ROS) and the redox state of cells is deeply rooted in the biology of almost all organisms, regulating development, growth, and responses to the environment. Recent studies revealed that the ROS levels and redox state of one cell can be transmitted, as an information 'state' or 'currency', to other cells and spread by cell-to-cell communication within an entire community of cells or an organism. Here, we discuss the different pathways that mediate cell-to-cell signaling in plants, their hierarchy, and the different mechanisms that transmit ROS/redox signaling between different cells. We further hypothesize that ROS/redox signaling between different organisms could play a key role within the 'one world' principle, impacting human health and our future.

2.
Plant Cell Environ ; 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38515255

RESUMEN

Reactive oxygen species (ROS) play a critical role in plant development and stress responses, acting as key components in rapid signalling pathways. The 'ROS wave' triggers essential acclimation processes, ultimately ensuring plant survival under diverse challenges. This review explores recent advances in understanding the composition and functionality of the ROS wave within plant cells. During their initiation and propagation, ROS waves interact with other rapid signalling pathways, hormones and various molecular compounds. Recent research sheds light on the intriguing lack of a rigid hierarchy governing these interactions, highlighting a complex interplay between diverse signals. Notably, ROS waves culminate in systemic acclimation, a crucial outcome for enhanced stress tolerance. This review emphasizes the versatility of ROS, which act as flexible players within a network of short- and long-term factors contributing to plant stress resilience. Unveiling the intricacies of these interactions between ROS and various signalling molecules holds immense potential for developing strategies to augment plant stress tolerance, contributing to improved agricultural practices and overall ecosystem well-being.

3.
Plant J ; 117(6): 1642-1655, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38315509

RESUMEN

Plants growing under natural conditions experience high light (HL) intensities that are often accompanied by elevated temperatures. These conditions could affect photosynthesis, reduce yield, and negatively impact agricultural productivity. The combination of different abiotic challenges creates a new type of stress for plants by generating complex environmental conditions that often exceed the impact of their individual parts. Transcription factors (TFs) play a key role in integrating the different molecular signals generated by multiple stress conditions, orchestrating the acclimation response of plants to stress. In this study, we show that the TF WRKY48 negatively controls the acclimation of Arabidopsis thaliana plants to a combination of HL and heat stress (HL + HS), and its expression is attenuated by jasmonic acid under HL + HS conditions. Using comparative physiological and transcriptomic analyses between wild-type and wrky48 mutants, we further demonstrate that under control conditions, WRKY48 represses the expression of a set of transcripts that are specifically required for the acclimation of plants to HL + HS, hence its suppression during the HL + HS stress combination contributes to plant survival under these conditions. Accordingly, mutants that lack WRKY48 are more resistant to HL + HS, and transgenic plants that overexpress WRKY48 are more sensitive to it. Taken together, our findings reveal that WRKY48 is a negative regulator of the transcriptomic response of Arabidopsis to HL + HS and provide new insights into the complex regulatory networks of plant acclimation to stress combination.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Respuesta al Choque Térmico , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Arabidopsis/metabolismo , Aclimatación , Luz , Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico
4.
Plant Cell Environ ; 47(4): 1171-1184, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38164061

RESUMEN

To successfully survive, develop, grow and reproduce, multicellular organisms must coordinate their molecular, physiological, developmental and metabolic responses among their different cells and tissues. This process is mediated by cell-to-cell, vascular and/or volatile communication, and involves electric, chemical and/or hydraulic signals. Within this context, stomata serve a dual role by coordinating their responses to the environment with their neighbouring cells at the epidermis, but also with other stomata present on other parts of the plant. As stomata represent one of the most important conduits between the plant and its above-ground environment, as well as directly affect photosynthesis, respiration and the hydraulic status of the plant by controlling its gas and vapour exchange with the atmosphere, coordinating the overall response of stomata within and between different leaves and tissues plays a cardinal role in plant growth, development and reproduction. Here, we discuss different examples of local and systemic stomatal coordination, the different signalling pathways that mediate them, and the importance of systemic stomatal coordination to our food supply, ecosystems and weather patterns, under our changing climate. We further discuss the potential biotechnological implications of regulating systemic stomatal responses for enhancing agricultural productivity in a warmer and CO2 -rich environment.


Asunto(s)
Ecosistema , Estomas de Plantas , Estomas de Plantas/fisiología , Plantas/metabolismo , Hojas de la Planta/metabolismo , Fotosíntesis/fisiología , Cambio Climático
5.
Plant Physiol ; 194(3): 1358-1369, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-37847095

RESUMEN

The complexity of environmental factors affecting crops in the field is gradually increasing due to climate change-associated weather events, such as droughts or floods combined with heat waves, coupled with the accumulation of different environmental and agricultural pollutants. The impact of multiple stress conditions on plants was recently termed "multifactorial stress combination" (MFSC) and defined as the occurrence of 3 or more stressors that impact plants simultaneously or sequentially. We recently reported that with the increased number and complexity of different MFSC stressors, the growth and survival of Arabidopsis (Arabidopsis thaliana) seedlings declines, even if the level of each individual stress is low enough to have no significant effect on plants. However, whether MFSC would impact commercial crop cultivars is largely unknown. Here, we reveal that a MFSC of 5 different low-level abiotic stresses (salinity, heat, the herbicide paraquat, phosphorus deficiency, and the heavy metal cadmium), applied in an increasing level of complexity, has a significant negative impact on the growth and biomass of a commercial rice (Oryza sativa) cultivar and a maize (Zea mays) hybrid. Proteomics, element content, and mixOmics analyses of MFSC in rice identified proteins that correlate with the impact of MFSC on rice seedlings, and analysis of 42 different rice genotypes subjected to MFSC revealed substantial genetic variability in responses to this unique state of stress combination. Taken together, our findings reveal that the impacts of MFSC on 2 different crop species are severe and that MFSC may substantially affect agricultural productivity.


Asunto(s)
Arabidopsis , Oryza , Oryza/genética , Zea mays/genética , Agricultura , Biomasa
6.
Plant J ; 117(6): 1728-1745, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38050346

RESUMEN

Global warming, climate change, and industrial pollution are altering our environment subjecting plants, microbiomes, and ecosystems to an increasing number and complexity of abiotic stress conditions, concurrently or sequentially. These conditions, termed, "multifactorial stress combination" (MFSC), can cause a significant decline in plant growth and survival. However, the impacts of MFSC on reproductive tissues and yield of major crop plants are largely unknown. We subjected soybean (Glycine max) plants to a MFSC of up to five different stresses (water deficit, salinity, low phosphate, acidity, and cadmium), in an increasing level of complexity, and conducted integrative transcriptomic-phenotypic analysis of their reproductive and vegetative tissues. We reveal that MFSC has a negative cumulative effect on soybean yield, that each set of MFSC condition elicits a unique transcriptomic response (that is different between flowers and leaves), and that selected genes expressed in leaves or flowers of soybean are linked to the effects of MFSC on different vegetative, physiological, and/or reproductive parameters. Our study identified networks and pathways associated with reactive oxygen species, ascorbic acid and aldarate, and iron/copper signaling/metabolism as promising targets for future biotechnological efforts to augment the resilience of reproductive tissues of major crop plants to MFSC. In addition, we provide unique phenotypic and transcriptomic datasets for dissecting the mechanistic effects of MFSC on the vegetative, physiological, and reproductive processes of a crop plant.


Asunto(s)
Ecosistema , Grano Comestible , Grano Comestible/genética , Perfilación de la Expresión Génica , Transcriptoma , Estrés Fisiológico/genética
7.
Plant J ; 117(6): 1800-1814, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37996968

RESUMEN

The complexity of environmental conditions encountered by plants in the field, or in nature, is gradually increasing due to anthropogenic activities that promote global warming, climate change, and increased levels of pollutants. While in the past it seemed sufficient to study how plants acclimate to one or even two different stresses affecting them simultaneously, the complex conditions developing on our planet necessitate a new approach of studying stress in plants: Acclimation to multiple stress conditions occurring concurrently or consecutively (termed, multifactorial stress combination [MFSC]). In an initial study of the plant response to MFSC, conducted with Arabidopsis thaliana seedlings subjected to an MFSC of six different abiotic stresses, it was found that with the increase in the number and complexity of different stresses simultaneously impacting a plant, plant growth and survival declined, even if the effects of each stress involved in such MFSC on the plant was minimal or insignificant. In three recent studies, conducted with different crop plants, MFSC was found to have similar effects on a commercial rice cultivar, a maize hybrid, tomato, and soybean, causing significant reductions in growth, biomass, physiological parameters, and/or yield traits. As the environmental conditions on our planet are gradually worsening, as well as becoming more complex, addressing MFSC and its effects on agriculture and ecosystems worldwide becomes a high priority. In this review, we address the effects of MFSC on plants, crops, agriculture, and different ecosystems worldwide, and highlight potential avenues to enhance the resilience of crops to MFSC.


Asunto(s)
Productos Agrícolas , Ecosistema , Desarrollo de la Planta , Cambio Climático , Plantones , Estrés Fisiológico
8.
Plant Physiol ; 193(3): 2215-2231, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37534775

RESUMEN

Waterlogging stress (WLS) negatively impacts the growth and yield of crops resulting in heavy losses to agricultural production. Previous studies have revealed that WLS induces a systemic response in shoots that is partially dependent on the plant hormones ethylene and abscisic acid. However, the role of rapid cell-to-cell signaling pathways, such as the reactive oxygen species (ROS) and calcium waves, in systemic responses of plants to WLS is unknown at present. Here, we reveal that an abrupt WLS treatment of Arabidopsis (Arabidopsis thaliana) plants growing in peat moss triggers systemic ROS and calcium wave responses and that the WLS-triggered ROS wave response of Arabidopsis is dependent on the ROS-generating RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD), calcium-permeable channels GLUTAMATE-LIKE RECEPTOR 3.3 and 3.6 (GLR3.3 and GLR3.6), and aquaporin PLASMA MEMBRANE INTRINSIC PROTEIN 2;1 (PIP2;1) proteins. We further show that WLS is accompanied by a rapid systemic transcriptomic response that is evident as early as 10 min following waterlogging initiation, includes many hypoxia-response transcripts, and is partially dependent on RBOHD. Interestingly, the abrupt WLS of Arabidopsis resulted in the triggering of a rapid hydraulic wave response and the transient opening of stomata on leaves. In addition, it induced in plants a heightened state of tolerance to a subsequent submergence stress. Taken together, our findings reveal that the initiation of WLS in plants is accompanied by rapid systemic physiological and transcriptomic responses that involve the ROS, calcium, and hydraulic waves, as well as the induction of hypoxia acclimation mechanisms in systemic tissues.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Calcio/metabolismo , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Plantas/metabolismo , Hipoxia , Regulación de la Expresión Génica de las Plantas
9.
Plant J ; 116(4): 1064-1080, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37006191

RESUMEN

Global warming and climate change are driving an alarming increase in the frequency and intensity of extreme climate events, such as droughts, heat waves, and their combination, inflicting heavy losses to agricultural production. Recent studies revealed that the transcriptomic responses of different crops to water deficit (WD) or heat stress (HS) are very different from that to a combination of WD + HS. In addition, it was found that the effects of WD, HS, and WD + HS are significantly more devastating when these stresses occur during the reproductive growth phase of crops, compared to vegetative growth. As the molecular responses of different reproductive and vegetative tissues of plants to WD, HS, or WD + HS could be different from each other and these differences could impact many current and future attempts to enhance the resilience of crops to climate change through breeding and/or engineering, we conducted a transcriptomic analysis of different soybean (Glycine max) tissues to WD, HS, and WD + HS. Here we present a reference transcriptomic dataset that includes the response of soybean leaf, pod, anther, stigma, ovary, and sepal to WD, HS, and WD + HS conditions. Mining this dataset for the expression pattern of different stress response transcripts revealed that each tissue had a unique transcriptomic response to each of the different stress conditions. This finding is important as it suggests that enhancing the overall resilience of crops to climate change could require a coordinated approach that simultaneously alters the expression of different groups of transcripts in different tissues in a stress-specific manner.


Asunto(s)
Transcriptoma , Agua , Agua/metabolismo , Glycine max/fisiología , Fitomejoramiento , Respuesta al Choque Térmico/genética , Deshidratación , Productos Agrícolas/metabolismo , Sequías , Estrés Fisiológico
10.
Free Radic Biol Med ; 193(Pt 1): 354-362, 2022 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-36279971

RESUMEN

Stress results in the enhanced accumulation of reactive oxygen species (ROS) in plants, altering the redox state of cells and triggering the activation of multiple defense and acclimation mechanisms. In addition to activating ROS and redox responses in tissues that are directly subjected to stress (termed 'local' tissues), the sensing of stress in plants triggers different systemic signals that travel to other parts of the plant (termed 'systemic' tissues) and activate acclimation and defense mechanisms in them; even before they are subjected to stress. Among the different systemic signals triggered by stress in plants are electric, calcium, ROS, and redox waves that are mobilized in a cell-to-cell fashion from local to systemic tissues over long distances, sometimes at speeds of up to several millimeters per second. Here, we discuss new studies that identified various molecular mechanisms and proteins involved in mediating systemic signals in plants. In addition, we highlight recent studies that are beginning to unravel the mode of integration and hierarchy of the different systemic signals and underline open questions that require further attention. Unraveling the role of ROS and redox in plant stress responses is highly important for the development of climate resilient crops.


Asunto(s)
Plantas , Transducción de Señal , Especies Reactivas de Oxígeno/metabolismo , Plantas/genética , Plantas/metabolismo , Transducción de Señal/fisiología , Oxidación-Reducción , Aclimatación , Estrés Fisiológico
11.
Plant Cell Environ ; 45(2): 572-590, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34800292

RESUMEN

The synthetic auxin 2,4-dichlorophenoxyacetic acid (2,4-D) functions as an agronomic weed control herbicide. High concentrations of 2,4-D induce plant growth defects, particularly leaf epinasty and stem curvature. Although the 2,4-D triggered reactive oxygen species (ROS) production, little is known about its signalling. In this study, by using a null mutant in peroxisomal acyl CoA oxidase 1 (acx1-2), we identified acyl-coenzyme A oxidase 1 (ACX1) as one of the main sources of ROS production and, in part, also causing the epinastic phenotype following 2,4-D application. Transcriptomic analyses of wild type (WT) plants after treatment with 2,4-D revealed a ROS-related peroxisomal footprint in early plant responses, while other organelles, such as mitochondria and chloroplasts, are involved in later responses. Interestingly, a group of 2,4-D-responsive ACX1-dependent transcripts previously associated with epinasty is related to auxin biosynthesis, metabolism, and signalling. We found that the auxin receptor auxin signalling F-box 3 (AFB3), a component of Skp, Cullin, F-box containing complex (SCF) (ASK-cullin-F-box) E3 ubiquitin ligase complexes, which mediates auxin/indole acetic acid (AUX/IAA) degradation by the 26S proteasome, acts downstream of ACX1 and is involved in the epinastic phenotype induced by 2,4-D. We also found that protein degradation associated with ubiquitin E3-RING and E3-SCF-FBOX in ACX1-dependent signalling in plant responses to 2,4-D is significantly regulated over longer treatment periods.


Asunto(s)
Ácido 2,4-Diclorofenoxiacético/efectos adversos , Arabidopsis/efectos de los fármacos , Herbicidas/efectos adversos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Arabidopsis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...