Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 62(6): e202215865, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36470847

RESUMEN

Sodium-ion batteries (SIBs) with fast-charge capability and long lifespan could be applied in various sustainable energy storage systems, from personal devices to grid storage. Inspired by the disordered Rubik's cube, here, we report that the high-entropy (HE) concept can lead to a very substantial improvement in the sodium storage properties of hexacyanoferrate (HCF). An example of HE-HCF has been synthesized as a proof of concept, which has achieved impressive cycling stability over 50 000 cycles and an outstanding fast-charging capability up to 75 C. Remarkable air stability and all-climate performance are observed. Its quasi-zero-strain reaction mechanism and high sodium diffusion coefficient have been measured and analyzed by multiple in situ techniques and density functional theory calculations. This strategy provides new insights into the development of advanced electrodes and provides the opportunity to tune electrochemical performance by tailoring the atomic composition.

2.
Nano Lett ; 22(3): 1302-1310, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35089723

RESUMEN

For practical sodium-ion batteries, both high electrochemical performance and cost efficiency of the electrode materials are considered as two key parameters. Prussian blue analogues (PBAs) are broadly recognized as promising cathode materials due to their low cost, high theoretical capacity, and cycling stability, although they suffer from low-crystallinity-induced performance deterioration. Herein, a facile "ice-assisted" strategy is presented to prepare highly crystallized PBAs without any additives. By suppressing structure defects, the cathode exhibits a high capacity of 123 mAh g-1 with initial Coulombic efficiency of 87.2%, a long cycling lifespan of 3000 cycles, and significantly enhanced high/low temperature performance and calendar life. Remarkably, the low structure distortion and high sodium diffusion coefficient have been identified via in situ synchrotron powder diffraction and first-principles calculations, while its thermal stability has been analyzed by in situ heated X-ray powder diffraction. We believe the results could pave the way to the low-cost and large-scale application of PBAs in all-climate sodium-ion batteries.

3.
J Phys Chem Lett ; 12(34): 8157-8163, 2021 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-34410734

RESUMEN

The reliable characterization of the photoelectrochemical (PEC) performance of unstable photoelectrodes, often the simplest devices used as a baseline, is a huge challenge. By performing a correlation analysis of more than 100 parameters of Cu2O photocathodes electrodeposited under the same conditions, we discovered a strong positive correlation (R = 0.866) between the photocurrent in argon and the deposition current peak magnitude during electrodeposition, while a strong negative correlation (R = -0.787) was found in CO2. In argon, a positive correlation between the photocurrent during PEC tests and the post-PEC dark current suggests the dominance of photodegradation. In CO2, the higher photocurrent in PEC tests correlates well with the lower post-PEC dark current, revealing the dominance of photocatalytic CO2 reduction during the rapid PEC tests. Correlation analysis provides statistically robust insights into the operation of unstable electrodes based on routinely measured parameters and thus constitutes a simple yet previously unexplored methodology for characterizing photoelectrodes within the first minutes of operation.

4.
Adv Mater ; 33(11): e2008024, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33522010

RESUMEN

Core-shell and hollow nanostructures have been receiving significant interest due to their potential in wide scientific and technological fields. Given such large scope, however, they still lag far behind in terms of the ambition toward controllably, or even programmatically, synthesizing libraries of core-shell structures on a large scale. Here, a general route for the programmable preparation of complex core-shell nanostructures by using liquid metal (LM) droplets as reformable templates is presented, and the triggering of a localized galvanic replacement reaction in one ultrasonication system is demonstrated. Benefiting from the activity and mobility of the metal components in LM templates, high-level compositional diversity control and quantitative regulation of both the core and the shell layers of the heterogeneous products are achieved, which cannot be realized with a solid-template synthetic route.

5.
Chem Commun (Camb) ; 55(60): 8808-8811, 2019 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-31119255

RESUMEN

We propose a facile approach to synthesise ultrathin iron oxyhydroxide nanosheets for use in catalysing the electrochemical oxygen evolution reaction. This two dimensional material lowers the overpotential and provides a platform for further performance enhancement via integration of species such as nickel into an ultrathin nanosheet structure.

6.
Adv Mater ; 30(35): e1802595, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30015992

RESUMEN

Electrical communication between a biological system and outside equipment allows one to monitor and influence the state of the tissue and nervous networks. As the bridge, bioelectrodes should possess both electrical conductivity and adaptive mechanical properties matching the target soft biosystem, but this is still a big challenge. A family of liquid-metal-based magnetoactive slurries (LMMSs) formed by dispersing magnetic iron particles in a Ga-based liquid metal (LM) matrix is reported here. The mechanical properties, viscosity, and stiffness of such materials rapidly respond to the stimulus of an applied magnetic field. By varying the intensity of the magnetic field, regulation within a factor of 1000 of the Young's modulus from ≈kPa to ≈MPa, and the ability to reach GPa with more dense iron particles inside the LMMS are demonstrated. With the advantage of high conductivity of the LM matrix, the functions of the LMMS are not only limited to the soft implanted electrodes or penetrating electrodes in biosystems: the electrical response based on the LMMS electrodes can also be precisely tuned by simply regulating the applied magnetic field.


Asunto(s)
Magnetismo , Módulo de Elasticidad , Conductividad Eléctrica , Electrodos Implantados , Metales , Viscosidad
7.
Adv Mater ; 29(48)2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28328167

RESUMEN

Silicene, a single-layer-thick silicon nanosheet with a honeycomb structure, is successfully fabricated by the molecular-beam-epitaxy (MBE) deposition method on metallic substrates and by the solid-state reaction method. Here, recent progress on the features of silicene that make it a prospective anode for lithium-ion batteries (LIBs) are discussed, including its charge-carrier mobility, chemical stability, and metal-silicene interactions. The electrochemical performance of silicene is reviewed in terms of both theoretical predictions and experimental measurements, and finally, its challenges and outlook are considered.

8.
ACS Nano ; 8(10): 10019-25, 2014 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-25248135

RESUMEN

Silicene monolayers grown on Ag(111) surfaces demonstrate a band gap that is tunable by oxygen adatoms from semimetallic to semiconducting type. With the use of low-temperature scanning tunneling microscopy, we find that the adsorption configurations and amounts of oxygen adatoms on the silicene surface are critical for band gap engineering, which is dominated by different buckled structures in √13 × âˆš13, 4 × 4, and 2√3 × 2√3 silicene layers. The Si-O-Si bonds are the most energy-favored species formed on √13 × âˆš13, 4 × 4, and 2√3 × 2√3 structures under oxidation, which is verified by in situ Raman spectroscopy as well as first-principles calculations. The silicene monolayers retain their structures when fully covered by oxygen adatoms. Our work demonstrates the feasibility of tuning the band gap of silicene with oxygen adatoms, which, in turn, expands the base of available two-dimensional electronic materials for devices with properties that is hardly achieved with graphene oxide.

9.
Nanoscale ; 4(3): 940-5, 2012 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-22173836

RESUMEN

Hybrid polypyrrole (PPy)-multi walled carbon nanotube (MWNT) yarns were obtained by chemical and electrochemical polymerization of pyrrole on the surface and within the porous interior of twisted MWNT yarns. The material was characterized by scanning electron microscopy, electrochemical, mechanical and electrical measurements. It was found that the hybrid PPy-MWNT yarns possessed significantly higher mechanical strength (over 740 MPa) and Young's modulus (over 54 GPa) than the pristine MWNT yarn. The hybrid yarns also exhibited substantially higher electrical conductivity (over 235 S cm(-1)) and their specific capacitance was found to be in excess of 60 F g(-1). Measurements of temperature dependence of electrical conductivity revealed semiconducting behaviour, with a large increase of band gap near 100 K. The collected low temperature data are in good agreement with a three-dimensional variable range hopping model (3D-VRH). The improved durability of the yarns is important for electrical applications. The composite yarns can be produced in commercial quantities and used for applications where the electrical conductivity and good mechanical properties are of primary importance.

10.
J Org Chem ; 76(24): 10078-82, 2011 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-22070135

RESUMEN

The tetrabutylammonium complex with a 2:5 stoichiometry, (n-Bu(4)N)(2)(TCNQ)(5), has been prepared and structurally characterized by X-ray crystallography. Diagnostic bands in the Raman spectrum and signature features in the electrochemistry confirm that the TCNQ moieties are partially charged in the solid state. EPR, magnetic susceptibility, and electrical conductivity measurements are all consistent with (n-Bu(4)N)(2)(TCNQ)(5) behaving as a quasi-one-dimensional organic semiconductor.

11.
Nano Lett ; 11(10): 4337-42, 2011 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-21910447

RESUMEN

ZnO is a promising high figure-of-merit (ZT) thermoelectric material for power harvesting from heat due to its high melting point, high electrical conductivity σ, and Seebeck coefficient α, but its practical use is limited by a high lattice thermal conductivity κ(L). Here, we report Al-containing ZnO nanocomposites with up to a factor of 20 lower κ(L) than non-nanostructured ZnO, while retaining bulklike α and σ. We show that enhanced phonon scattering promoted by Al-induced grain refinement and ZnAl(2)O(4) nanoprecipitates presages ultralow κ ∼ 2 Wm( -1) K(-1) at 1000 K. The high α∼ -300 µV K(-1) and high σ ∼ 1-10(4) Ω(-1 )m(-1) result from an offsetting of the nanostructuring-induced mobility decrease by high, and nondegenerate, carrier concentrations obtained via excitation from shallow Al donor states. The resultant ZT ∼ 0.44 at 1000 K is 50% higher than that for the best non-nanostructured counterpart material at the same temperature and holds promise for engineering advanced oxide-based high-ZT thermoelectrics for applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...