Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Infect Dis ; 20(1): 441, 2020 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-32571220

RESUMEN

BACKGROUND: PCRctic is an innovative assay based on 16S rDNA PCR technology that has been designed to detect a single intact bacterium in a specimen of cerebro-spinal fluid (CSF). The assay's potential for accurate, fast and inexpensive discrimination of bacteria-free CSF makes it an ideal adjunct for confident exclusion of bacterial meningitis in newborn babies where the negative predictive value of bacterial culture is poor. This study aimed to stress-test and optimize PCRctic in the "field conditions" to attain a clinically useful level of specificity. METHODS: The specificity of PCRctic was evaluated in CSF obtained from newborn babies investigated for meningitis on a tertiary neonatal unit. Following an interim analysis, the method of skin antisepsis was changed to increase bactericidal effect, and snap-top tubes (Eppendorf™) replaced standard universal containers for collection of CSF to reduce environmental contamination. RESULTS: The assay's specificity was 90.5% in CSF collected into the snap-top tubes - up from 60% in CSF in the universal containers. The method of skin antisepsis had no effect on the specificity. All CSF cultures were negative and no clinical cases of neonatal bacterial meningitis occurred during the study. CONCLUSIONS: A simple and inexpensive optimization of CSF collection resulted in a high specificity output. The low prevalence of neonatal bacterial meningitis means that a large multi-centre study will be required to validate the assay's sensitivity and its negative predictive value.


Asunto(s)
Líquido Cefalorraquídeo/microbiología , Meningitis Bacterianas/microbiología , Reacción en Cadena de la Polimerasa/métodos , Bacterias/genética , ADN Ribosómico/genética , Estudios de Factibilidad , Humanos , Recién Nacido , Enfermedades del Recién Nacido/microbiología , Meningitis Bacterianas/diagnóstico , Sensibilidad y Especificidad
2.
Open Biol ; 5(12): 150185, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26701932

RESUMEN

Dishevelled is a pivot in Wnt signal transduction, controlling both ß-catenin-dependent transcription to specify proliferative cell fates, and cell polarity and other non-nuclear events in post-mitotic cells. In response to Wnt signals, or when present at high levels, Dishevelled forms signalosomes by dynamic polymerization. Its levels are controlled by ubiquitylation, mediated by various ubiquitin ligases, including NEDD4 family members that bind to a conserved PPxY motif in Dishevelled (mammalian Dvl1-3). Here, we show that Dvl2 binds to the ubiquitin ligase WWP2 and unlocks its ligase activity from autoinhibition. This disinhibition of WWP2 depends on several features of Dvl2 including its PPxY motif and to a lesser extent its DEP domain, but crucially on the ability of Dvl2 to polymerize, indicating that WWP2 is activated in Wnt signalosomes. We show that Notch intracellular domains are substrates for Dvl-activated WWP2 and their transcriptional activity is consequently reduced, providing a molecular mechanism for cross-talk between Wnt and Notch signalling. These regulatory interactions are conserved in Drosophila whose WWP2 orthologue, Suppressor-of-deltex, downregulates Notch signalling upon activation by Dishevelled in developing wing tissue. Attentuation of Notch signalling by Dishevelled signalosomes could be important during the transition of cells from the proliferative to the post-mitotic state.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Fosfoproteínas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Línea Celular , Proteínas Dishevelled , Proteínas de Drosophila , Humanos , Unión Proteica , Estructura Terciaria de Proteína , Ubiquitinación , Proteínas Wnt/metabolismo , Vía de Señalización Wnt
3.
Proc Natl Acad Sci U S A ; 107(25): 11429-34, 2010 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-20534535

RESUMEN

Ndfip1 and Ndfip2 are related endosomal membrane proteins that bind to and activate members of the Nedd4 family of E3 ubiquitin ligases. These ligases in turn affect receptor tyrosine kinase signaling by ubiquitinating several key components of the signaling pathways. Here we investigate the role of the Ndfip proteins in EGF signaling. We show that they associate with the EGF receptor and PTEN, and control the ubiquitination and abundance of PTEN, c-Cbl, and Src family kinases. Ndfip2, but not Ndfip1, also binds to and is phosphorylated by Src and Lyn, and can act as a scaffold for Src phosphorylation of Ndfip1 and potentially other substrates. Depletion of Ndfip1 inhibits Akt activation in EGF-stimulated HeLa cells, stimulates activation of Jnk, and enhances cell multiplication. Thus Ndfip1 and Ndfip2 are physically and functionally associated with multiple components of the EGF signaling cascade, and their levels modulate the relative output of different signaling pathways.


Asunto(s)
Proteínas Portadoras/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas de la Membrana/metabolismo , Fosfohidrolasa PTEN/metabolismo , Transducción de Señal , Ubiquitina-Proteína Ligasas/metabolismo , Sitios de Unión , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Receptores ErbB/metabolismo , Células HeLa , Humanos , Ubiquitina-Proteína Ligasas Nedd4 , Sistemas de Lectura Abierta , Fosforilación , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-cbl/metabolismo
4.
Traffic ; 10(12): 1856-67, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19912579

RESUMEN

Many plasma membrane transporters in yeast are endocytosed in response to excess substrate or certain stresses and degraded in the vacuole. Endocytosis invariably requires ubiquitination by the HECT domain ligase Rsp5. In the cases of the manganese transporter Smf1 and the amino acid transporters Can1, Lyp1 and Mup1 it has been shown that ubiquitination is mediated by arrestin-like adaptor proteins that bind to Rsp5 and recognize specific transporters. As yeast contains a large family of arrestins, this has been suggested as a general model for transporter regulation; however, analysis is complicated by redundancy amongst the arrestins. We have tested this model by removing all the arrestins and examining the requirements for endocytosis of four more transporters, Itr1 (inositol), Hxt6 (glucose), Fur4 (uracil) and Tat2 (tryptophan). This reveals functions for the arrestins Art5/Ygr068c and Art4/Rod1, and additional roles for Art1/Ldb19, Art2/Ecm21 and Art8/Csr2. It also reveals functional redundancy between arrestins and the arrestin-like adaptors Bul1 and Bul2. In addition, we show that delivery to the vacuole often requires multiple additional ubiquitin ligases or adaptors, including the RING domain ligase Pib1, and the adaptors Bsd2, Ear1 and Ssh4, some acting redundantly. We discuss the similarities and differences in the requirements for regulation of different transporters.


Asunto(s)
Arrestina/fisiología , Endocitosis/fisiología , Proteínas de Transporte de Membrana/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Proteínas de Transporte de Membrana/química , Datos de Secuencia Molecular , Proteínas de Saccharomyces cerevisiae/química , Homología de Secuencia de Aminoácido , Ubiquitinación
5.
PLoS One ; 4(4): e5038, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19337370

RESUMEN

BACKGROUND: Misfolded proteins are generally recognised by cellular quality control machinery, which typically results in their ubiquitination and degradation. For soluble cytoplasmic proteins, degradation is mediated by the proteasome. Membrane proteins that fail to fold correctly are subject to ER associated degradation (ERAD), which involves their extraction from the membrane and subsequent proteasome-dependent destruction. Proteins with abnormal transmembrane domains can also be recognised in the Golgi or endosomal system and targeted for destruction in the vacuole/lysosome. It is much less clear what happens to membrane proteins that reach their destination, such as the cell surface, and then suffer damage. METHODOLOGY/PRINCIPAL FINDINGS: We have tested the ability of yeast cells to degrade membrane proteins to which temperature-sensitive cytoplasmic alleles of the Ura3 protein or of phage lambda repressor have been fused. In soluble form, these proteins are rapidly degraded upon temperature shift, in part due to the action of the Doa10 and San1 ubiquitin ligases and the proteasome. When tethered to the ER protein Use1, they are also degraded. However, when tethered to a plasma membrane protein such as Sso1 they escape degradation, either in the vacuole or by the proteasome. CONCLUSIONS/SIGNIFICANCE: Membrane proteins with a misfolded cytoplasmic domain appear not to be efficiently recognised and degraded once they have escaped the ER, even though their defective domains are exposed to the cytoplasm and potentially to cytoplasmic quality controls. Membrane tethering may provide a way to reduce degradation of unstable proteins.


Asunto(s)
Proteínas Fúngicas/metabolismo , Proteínas de la Membrana/metabolismo , Alelos , Citoplasma/metabolismo , Proteínas Fúngicas/genética , Hidrólisis , Proteínas de la Membrana/genética , Control de Calidad , Temperatura , Ubiquitinación
6.
EMBO Rep ; 10(5): 501-7, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19343052

RESUMEN

HECT domain E3 ubiquitin ligases of the NEDD4 family control many cellular processes, but their regulation is poorly understood. They contain multiple WW domains that recognize PY elements. Here, we show that the small PY-containing membrane proteins, NDFIP1 and NDFIP2 (NEDD4 family-interacting proteins), activate the catalytic activity of ITCH and of several other HECT ligases by binding to them. This releases them from an autoinhibitory intramolecular interaction, which seems to be characteristic of these enzymes. Activation of ITCH requires multiple PY-WW interactions, but little else. Binding of NDFIP proteins is highly dynamic, potentially allowing activated ligases to access other PY-containing substrates. In agreement with this, NDFIP proteins promote ubiquitination in vivo both of Jun proteins, which have a PY motif, and of endophilin, which does not.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Portadoras/genética , Línea Celular , Complejos de Clasificación Endosomal Requeridos para el Transporte , Humanos , Proteínas de la Membrana/genética , Modelos Biológicos , Ubiquitina-Proteína Ligasas Nedd4 , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
7.
EMBO Rep ; 9(12): 1216-21, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18953286

RESUMEN

Many plasma membrane proteins in yeast are ubiquitinated and endocytosed, but how they are recognized for modification has remained unknown. Here, we show that the manganese transporter Smf1 is endocytosed when cells are exposed to cadmium ions, that this endocytosis depends on Rsp5-dependent ubiquitination of specific lysines and that it also requires phosphorylation at nearby sites. This phosphorylation is, however, constitutive rather than stress-induced. Efficient ubiquitination requires Ecm21 or Csr2, two members of a family of arrestin-like yeast proteins that contain several PY motifs and bind to Rsp5. Ecm21 also binds to phosphorylated Smf1, providing a link between Rsp5 and its substrate. PY motif-containing arrestin-like proteins are found in many species, including humans, and might have a general role as ubiquitin ligase adaptors.


Asunto(s)
Arrestina/metabolismo , Proteínas de Transporte de Catión/metabolismo , Endocitosis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Ubiquitinación , Cadmio/toxicidad , Reactivos de Enlaces Cruzados , Complejos de Clasificación Endosomal Requeridos para el Transporte , Proteínas Fluorescentes Verdes , Lisina , Fosforilación , Unión Proteica , Proteínas Recombinantes de Fusión , Complejos de Ubiquitina-Proteína Ligasa
8.
Mol Biol Cell ; 18(7): 2429-40, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17429078

RESUMEN

Recognition of membrane proteins by the Nedd4/Rsp5 ubiquitin ligase family is a critical step in their targeting to the multivesicular body pathway. Some substrates contain "PY" motifs (PPxY), which bind to WW domains in the ligase. Others lack PY motifs and instead rely on adaptors that recruit the ligase to them. To investigate the mechanism of adaptor-mediated ubiquitination, we have characterized the interactions between the adaptor Bsd2, the ubiquitin ligase Rsp5, and the membrane proteins Cps1, Tre1, and Smf1 from Saccharomyces cerevisiae. We have reconstituted adaptor-mediated modification of Cps1 and Tre1 in vitro, and we show that two PY motifs in Bsd2 and two WW domains (WW2 and WW3) in Rsp5 are crucial for this. The binding of a weak noncanonical DMAPSY motif in Bsd2 to WW3 is an absolute requirement for Bsd2 adaptor function. We show that sorting of the manganese transporter Smf1, which requires both Bsd2 and Tre1, depends upon two PY motifs in Bsd2 and one motif in Tre1 but only two WW domains in Rsp5. We suggest that sequential assembly of first a Bsd2/Rsp5 complex, then a Tre1/Bsd2/Rsp5 complex followed by a rearrangement of PY-WW interactions is required for the ubiquitination of Smf1.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Complejos de Clasificación Endosomal Requeridos para el Transporte , Modelos Biológicos , Mutación/genética , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Saccharomyces cerevisiae/citología , Ubiquitina/metabolismo
9.
Trends Biochem Sci ; 31(11): 601-4, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16979894

RESUMEN

Newly synthesized secretory proteins pass through the Golgi apparatus, which consists of multiple cisternae containing distinct populations of enzymes. Are the cargo proteins shuttled between cisternae in vesicles or do they remain in a cisterna while it is the Golgi enzymes that are removed and replaced? As predicted by the latter model--the cisternal maturation hypothesis--two groups have directly observed the replacement of one Golgi protein with another in individual cisternae, thus answering the question. However, its solution raises many more unknowns.


Asunto(s)
Aparato de Golgi/fisiología , Aparato de Golgi/metabolismo , Transporte de Proteínas
10.
EMBO J ; 25(4): 662-72, 2006 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-16456538

RESUMEN

Plasma membrane transporters are often downregulated by their substrates. The yeast manganese transporter Smf1 is subject to two levels of regulation: heavy metals induce its sequestration within the cell, and also its ubiquitination and degradation in the vacuole. Degradation requires Bsd2, a membrane protein with a PPxY motif that recruits the ubiquitin ligase Rsp5, and which has a role in the quality control of membrane proteins, that expose hydrophilic residues to the lipid bilayer. We show that degradation of Smf1 requires in addition one of a pair of related yeast proteins, Tre1 and Tre2, that also contain PPxY motifs. Tre1 can partially inhibit manganese uptake without Bsd2, but requires Bsd2 to induce Smf1 degradation. It has a relatively hydrophilic transmembrane domain and binds to Bsd2. We propose that the Tre proteins specifically link Smf1 to the Bsd2-dependent quality control system. Their luminal domains are related to the transferrin receptor, but these are dispensable for Smf1 regulation. Tre proteins and the transferrin receptors appear to have evolved independently from the same family of membrane-associated proteases.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Regulación Fúngica de la Expresión Génica/fisiología , Membrana Dobles de Lípidos/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Secuencias de Aminoácidos/fisiología , Proteínas de Transporte de Catión/genética , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/fisiología , Complejos de Clasificación Endosomal Requeridos para el Transporte , Evolución Molecular , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Transporte Iónico/fisiología , Proteínas de la Membrana/genética , Metales Pesados/farmacología , Estructura Terciaria de Proteína/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Complejos de Ubiquitina-Proteína Ligasa/genética
11.
Traffic ; 7(2): 182-90, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16420526

RESUMEN

Membrane fusion in cells involves the interaction of SNARE proteins on apposing membranes. Formation of SNARE complexes is preceded by tethering events, and a number of protein complexes that are thought to mediate this have been identified. The VFT or GARP complex is required for endosome-Golgi traffic in yeast. It consists of four subunits, one of which, Vps51, has been shown to bind specifically to the SNARE Tlg1, which participates in the same fusion event. We have determined the structure of the N-terminal domain of Tlg1 bound to a peptide from the N terminus of Vps51. Binding depends mainly on residues 18-30 of Vps51. These form a short helix which lies in a conserved groove in the three-helix bundle formed by Tlg1. Surprisingly, although both Vps51 and Tlg1 are required for transport to the late Golgi from endosomes, removal of the Tlg1-binding sequences from Vps51 does not block such traffic in vivo. Thus, this particular interaction cannot be crucial to the process of vesicle docking or fusion.


Asunto(s)
Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas SNARE/química , Proteínas SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Fusión de Membrana , Proteínas de la Membrana/genética , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multiproteicos , Mutagénesis Sitio-Dirigida , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas SNARE/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido , Resonancia por Plasmón de Superficie , Técnicas del Sistema de Dos Híbridos , Proteínas de Transporte Vesicular/genética
12.
Curr Biol ; 14(9): R357-9, 2004 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-15120092

RESUMEN

Membrane proteins that are tagged with ubiquitin are diverted from the secretory pathway into lysosomes. New work shows that it is the GGA proteins that initiate sorting in the Golgi, and suggests that similar principles apply to multiple sorting steps.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Proteínas Adaptadoras del Transporte Vesicular , Proteínas Portadoras/metabolismo , Aparato de Golgi/metabolismo , Membranas Intracelulares/fisiología , Modelos Biológicos , Ubiquitinas/metabolismo , Membranas Intracelulares/metabolismo , Estructura Terciaria de Proteína , Transporte de Proteínas/fisiología
13.
BMC Cell Biol ; 5: 18, 2004 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-15128430

RESUMEN

BACKGROUND: Golgins are coiled-coil proteins associated with the Golgi apparatus, that are believed to be involved in the tethering of vesicles and the stacking of cisternae, as well as other functions such as cytoskeletal association. Many are peripheral membrane proteins recruited by GTPases. Several have been described in animal cells, and some in yeast, but the relationships between golgins from different species can be hard to define because although they share structural features, their sequences are not well conserved. RESULTS: We show here that the yeast protein Sgm1, previously shown to be recruited to the Golgi by the GTPase Ypt6, binds to Ypt6:GTP via a conserved 100-residue coiled-coil motif that can be identified in a wide range of eukaryotes. The mammalian equivalent of Sgm1 is TMF/ARA160, a protein previously identified in various screens as a putative transcription or chromatin remodelling factor. We show that it is a Golgi protein, and that it binds to the three known isoforms of the Ypt6 homologue Rab6. Depletion of the protein by RNA interference in rat NRK cells results in a modest dispersal of Golgi membranes around the cell, suggesting a role for TMF in the movement or adherence of Golgi stacks. CONCLUSION: We have identified TMF as an evolutionarily conserved golgin that binds Rab6 and contributes to Golgi organisation in animal cells.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Aparato de Golgi/ultraestructura , Factores de Transcripción/fisiología , Proteínas de Unión al GTP rab/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Unión al ADN/análisis , Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Aparato de Golgi/química , Datos de Secuencia Molecular , Proteínas de Unión al GTP Monoméricas/química , Proteínas de Unión al GTP Monoméricas/metabolismo , Estructura Terciaria de Proteína , Ratas , Proteínas de Saccharomyces cerevisiae , Homología de Secuencia de Aminoácido , Factores de Transcripción/análisis , Factores de Transcripción/metabolismo
14.
EMBO J ; 23(6): 1279-88, 2004 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-14988731

RESUMEN

Membrane proteins destined for the vacuolar or lysosomal lumen are typically ubiquitinated, the ubiquitin serving as a targeting signal for the multivesicular body pathway. The RING-domain ubiquitin ligase Tul1 is an integral membrane protein that modifies the yeast vacuolar enzyme carboxypeptidase S (Cps1), the polyphosphatase Ppn1/Phm5 and other proteins containing exposed hydrophilic residues within their transmembrane domains (TMDs). Here we show that Bsd2 provides an alternative ubiquitination mechanism for Cps1, Phm5 and other proteins. Bsd2 is a three-TMD protein with a PPXY motif that binds the HECT domain ubiquitin ligase Rsp5. It can thus act as a specific adaptor linking Rsp5 to its substrates. Like Tul1, the Bsd2 system recognises polar TMDs. Bsd2 also controls the vacuolar targeting of a manganese transporter and a mutant plasma membrane ATPase, and together with the ER retrieval receptor Rer1, it protects cells from stress. We suggest that Bsd2 has a wide role in the quality control of membrane proteins. Bsd2 is the yeast homologue of human NEDD4 binding protein N4WBP5, which may therefore have similar functions.


Asunto(s)
Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitina/metabolismo , Secuencia de Aminoácidos , Carboxipeptidasas/química , Carboxipeptidasas/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte , Regulación Fúngica de la Expresión Génica , Transporte Iónico , Metales/metabolismo , Datos de Secuencia Molecular , Mutación/genética , Unión Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Complejos de Ubiquitina-Proteína Ligasa/genética
15.
Curr Biol ; 13(18): 1636-40, 2003 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-13678596

RESUMEN

Many cells show a polarized distribution of some plasma membrane proteins, which may be maintained either by a diffusion barrier or kinetically: as first demonstrated in fibroblasts, locally exocytosed proteins will remain polarized if they are endocytosed and recycled before they can diffuse to equilibrium. In yeast, actin cables direct exocytosis to the bud and to the tips of polarized mating intermediates termed shmoos. A septin ring at the bud neck retains some proteins, but shmoos lack this. Here, we show that the exocytic SNARE Snc1 is kinetically polarized. It is concentrated at bud and shmoo tips, and this requires its endocytosis. Kinetic polarization is possible in these small cells because proteins diffuse much more slowly in the yeast plasma membrane than would be expected from measurements in animal cells. Slow diffusion requires neither the cell wall nor polymerized actin, but it is affected in the ergosterol synthesis mutant erg6. Other proteins also require endocytosis for efficient polarization, and the plasma membrane SNARE Sso1 can be polarized merely by appending an endocytic signal. Thus, despite their small size, yeast cells can use localized exocytosis and endocytic recycling as a simple mechanism to maintain polarity.


Asunto(s)
Membrana Celular/metabolismo , Polaridad Celular/fisiología , Endocitosis/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Difusión , Proteínas de la Membrana/metabolismo , Microscopía Confocal , Factores de Tiempo
16.
EMBO J ; 22(3): 548-57, 2003 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-12554655

RESUMEN

The endocytic pathway in yeast leads to the vacuole, but resident proteins of the late Golgi, and some endocytosed proteins such as the exocytic SNARE Snc1p, are retrieved specifically to the Golgi. Retrieval can occur from both a late pre-vacuolar compartment and early or 'post-Golgi' endosomes. We show that the endosomal SNARE Pep12p, and a mutant version that reaches the cell surface and is endocytosed, are retrieved from pre-vacuolar endosomes. As with Golgi proteins, this requires the sorting nexin Grd19p and components of the retromer coat, supporting the view that endosomal and Golgi residents both cycle continuously between the exocytic and endocytic pathways. In contrast, retrieval of Snc1p from post-Golgi endosomes requires the sorting nexin Snx4p, to which Snc1p can be cross-linked. Snx4p binds to Snx41p/ydr425w and to Snx42p/ydl113c, both of which are also required for efficient Snc1p sorting. Our findings suggest a general role for yeast sorting nexins in protein retrieval, rather than degradation, and indicate that different sorting nexins operate in different classes of endosomes.


Asunto(s)
Proteínas Portadoras/metabolismo , Endosomas/metabolismo , Proteínas Fúngicas/metabolismo , Transporte de Proteínas/fisiología , Inhibidores de Serina Proteinasa/metabolismo , Proteínas de Transporte Vesicular , Levaduras/fisiología , Proteínas Portadoras/genética , Endocitosis/fisiología , Proteínas Fúngicas/genética , Aparato de Golgi/metabolismo , Proteínas Fluorescentes Verdes , Indicadores y Reactivos/metabolismo , Proteínas Luminiscentes/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Qa-SNARE , Proteínas R-SNARE , Proteínas Recombinantes de Fusión/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Inhibidores de Serina Proteinasa/genética , Serpinas/metabolismo , Levaduras/genética
17.
Traffic ; 3(12): 922-9, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12453154

RESUMEN

We report the identification of a yeast SNARE that has escaped notice because of an apparent error in the genome sequence and because it is functionally redundant. It is encoded by an extended version of ORF YAL014c, and since its SNARE motif is related to mammalian syntaxin 8 we term the gene SYN8. Syn8p is in endosomes. Co-precipitation indicates a set of complexes containing Pep12p, Vti1p, either Syn8p or Tlg1p and either Snc1p or Ykt6p. Analysis of growth and trafficking defects demonstrates that in the absence of Tlg1p, Syn8p is required for Pep12p function. Conversely, when Tlg1p is present, Syn8p can be removed without loss of Pep12p function, or induction of any other obvious trafficking defect. Syn8p thus appears to be a functional homolog of mammalian syntaxin 8, but Tlg1p can, amongst other roles, provide an equivalent function.


Asunto(s)
Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/fisiología , Proteínas de Transporte Vesicular , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Endosomas/metabolismo , Proteínas Fluorescentes Verdes , Immunoblotting , Proteínas Luminiscentes/metabolismo , Microscopía Confocal , Microscopía Fluorescente , Datos de Secuencia Molecular , Plásmidos/metabolismo , Unión Proteica , Proteínas Qa-SNARE , Proteínas R-SNARE , Proteínas Recombinantes de Fusión/metabolismo , Proteínas SNARE , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces
18.
Curr Opin Cell Biol ; 14(4): 454-62, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12383796

RESUMEN

The endosomal system of yeast is simpler than that of animal cells, but as it is mapped more similarities are emerging. A key role for ubiquitin in sorting proteins to and into multivesicular bodies has been demonstrated. The finding that Phox homology domains recognise phosphatidylinositol 3-phosphate explains how sorting nexins are recruited to endosomes, where they mediate the retrieval of membrane proteins from the endocytic pathway.


Asunto(s)
Endosomas/fisiología , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular , Animales , Transporte Biológico , Proteínas Portadoras/metabolismo , Clatrina/metabolismo , Endosomas/metabolismo , Aparato de Golgi/metabolismo , Membranas Intracelulares/metabolismo , Modelos Biológicos , Señales de Clasificación de Proteína , Ubiquitina/metabolismo
19.
J Biol Chem ; 277(50): 48318-24, 2002 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-12377769

RESUMEN

Intracellular membrane fusion requires the complex coordination of SNARE, rab/ypt, and rab effector function. In the yeast Saccharomyces cerevisiae, fusion of endosome-derived vesicles with the late Golgi depends on a cascade of protein-protein interactions that results in the recruitment to Golgi membranes of a conserved docking complex, VFT. This complex binds to Ypt6-GTP, which is necessary for its localization to the Golgi, and also to the SNARE Tlg1p. We show here that the VFT complex contains a fourth, previously uncharacterized, subunit, Vps51p (Ykr020w). Yeast cells lacking VPS51 have defects in vacuole morphology and recycling of the SNARE Snc1p to the plasma membrane, but still assemble a core VFT complex consisting of Vps52p, Vps53p, and Vps54p that localizes properly to the Golgi. Binding to Ypt6-GTP is a property of Vps52p. In contrast, binding to Tlg1p is mediated by a short sequence at the N terminus of Vps51p. Recent evidence suggests that components of a number of rab/ypt effector complexes share a common, distantly related helical coiled-coil motif. We show that each VFT subunit requires this coiled-coil motif for assembly into the complex.


Asunto(s)
Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular , Secuencia de Aminoácidos , Datos de Secuencia Molecular , Unión Proteica , Proteínas SNARE , Proteínas de Saccharomyces cerevisiae/química , Homología de Secuencia de Aminoácido
20.
Nat Cell Biol ; 4(2): 117-23, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11788821

RESUMEN

Membrane proteins with transmembrane domains (TMDs) that contain polar residues exposed to the lipid bilayer are selectively sorted into multivesicular bodies (MVBs) and delivered to the yeast vacuole. Sorting of some, although not all, proteins into these structures is mediated by ubiquitination. We have identified a transmembrane ubiquitin ligase, Tul1, that is resident in the Golgi apparatus and is required for the ubiquitination of proteins with polar TMDs, including vacuolar proteins such as carboxypeptidase S. We suggest that Tul1 provides quality control, identifying misfolded membrane proteins and marking them for transport to endosomes and degradation in the vacuole.


Asunto(s)
Proteínas Fúngicas/metabolismo , Ligasas/metabolismo , Proteínas de la Membrana/metabolismo , Transporte de Proteínas/fisiología , Proteínas de Saccharomyces cerevisiae , Proteínas de Schizosaccharomyces pombe , Ubiquitina-Proteína Ligasas , Ubiquitina/metabolismo , Levaduras/metabolismo , Secuencia de Aminoácidos , Colorantes Fluorescentes/metabolismo , Glucosiltransferasas , Aparato de Golgi/enzimología , Aparato de Golgi/metabolismo , Ligasas/química , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Señales de Clasificación de Proteína , Estructura Terciaria de Proteína , Proteínas Qa-SNARE , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Técnicas del Sistema de Dos Híbridos , Levaduras/citología , Levaduras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...