Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Metab ; 54: 101388, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34774811

RESUMEN

OBJECTIVE: Obesity represents a growing health problem that is reaching pandemic dimensions and lacks effective cures, thus highlighting an urgent need for better mechanistic understanding and new therapeutic strategies. Unlike transcription, the function of translation in obesity has hardly been investigated. Here, we fill this knowledge gap by pinpointing a crucial function for gene regulation at the step of translation in diet-induced obesity. METHODS: We performed studies with human adipose tissue, high-fat-diet-induced obese mice and rats, CPEB4-knockout mice, and adipocyte lines. Cells were transfected with small-interfering RNAs that knockdown CPEB4. Transcriptome-wide identification and validation of CPEB4 targets in adipocytes were obtained by RNA-protein coimmunoprecipitation and high-throughput sequencing. The effect of CPEB4 depletion on high-fat-diet-induced dysbiosis was determined by 16S ribosomal-RNA gene sequencing and microbiome bioinformatics. RESULTS: We show that cytoplasmic polyadenylation element-binding protein 4 (CPEB4), which controls the translation of specific mRNAs by modulating their poly(A) tails, is highly expressed in visceral fat of obese but not lean humans and rodents (mice and rats), where it orchestrates an essential post-transcriptional reprogramming for aggravation of high-fat-diet-induced obesity. Mechanistically, CPEB4 overexpression in obese adipocytes activates the translation of factors essential for adipose tissue expansion (Cebpb, Stat5a) and adipocyte-intrinsic immune-like potential (Ccl2, Tlr4), as demonstrated by RNA-immunoprecipitation and high-throughput sequencing and experimentally validated in vivo. Consistently blocking CPEB4 production in knockout mice protects against diet-induced body weight gain and reduces adipose tissue enlargement and inflammation. In addition, the depletion of CPEB4 specifically in obese adipocytes using short hairpin RNAs decreases cell differentiation, lipid accumulation, and the proinflammatory and migratory capacity of macrophages. The absence of CPEB4 also attenuates high-fat diet-induced dysbiosis, shaping the microbiome composition toward a more beneficial profile, as shown by microbiome bioinformatics analysis. CONCLUSION: Our study identifies CPEB4 as a driver and therapeutic target to combat obesity.


Asunto(s)
Disbiosis/metabolismo , Obesidad/metabolismo , Proteínas de Unión al ARN/metabolismo , Adulto , Dieta Alta en Grasa/efectos adversos , Disbiosis/microbiología , Femenino , Microbioma Gastrointestinal , Humanos , Masculino , Obesidad/microbiología , Poliadenilación
2.
Gastroenterology ; 159(1): 273-288, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32169429

RESUMEN

BACKGROUND & AIMS: We investigated mechanisms of hepatic stellate cell (HSC) activation, which contributes to liver fibrogenesis. We aimed to determine whether activated HSCs increase glycolysis, which is regulated by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3), and whether this pathway might serve as a therapeutic target. METHODS: We performed studies with primary mouse HSCs, human LX2 HSCs, human cirrhotic liver tissues, rats and mice with liver fibrosis (due to bile duct ligation [BDL] or administration of carbon tetrachloride), and CPEB4-knockout mice. Glycolysis was inhibited in cells and mice by administration of a small molecule antagonist of PFKFB3 (3-[3-pyridinyl]-1-[4-pyridinyl]-2-propen-1-one [3PO]). Cells were transfected with small interfering RNAs that knock down PFKFB3 or CPEB4. RESULTS: Up-regulation of PFKFB3 protein and increased glycolysis were early and sustained events during HSC activation and accompanied by increased expression of markers of fibrogenesis; incubation of HSCs with 3PO or knockdown of PFKFB3 reduced their activation and proliferation. Mice with liver fibrosis after BDL had increased hepatic PFKFB3; injection of 3PO immediately after the surgery prevented HSC activation and reduced the severity of liver fibrosis compared with mice given vehicle. Levels of PFKFB3 protein were increased in fibrotic liver tissues from patients compared with non-fibrotic liver. Up-regulation of PFKFB3 in activated HSCs did not occur via increased transcription, but instead via binding of CPEB4 to cytoplasmic polyadenylation elements within the 3'-untranslated regions of PFKFB3 messenger RNA. Knockdown of CPEB4 in LX2 HSCs prevented PFKFB3 overexpression and cell activation. Livers from CPEB4-knockout had decreased PFKFB3 and fibrosis after BDL or administration of carbon tetrachloride compared with wild-type mice. CONCLUSIONS: Fibrotic liver tissues from patients and rodents (mice and rats) have increased levels of PFKFB3 and glycolysis, which are essential for activation of HSCs. Increased expression of PFKFB3 is mediated by binding of CPEB4 to its untranslated messenger RNA. Inhibition or knockdown of CPEB4 or PFKFB3 prevents HSC activation and fibrogenesis in livers of mice.


Asunto(s)
Células Estrelladas Hepáticas/patología , Cirrosis Hepática Experimental/patología , Cirrosis Hepática/patología , Fosfofructoquinasa-2/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Tetracloruro de Carbono/toxicidad , Línea Celular , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Glucólisis , Humanos , Hígado/citología , Hígado/patología , Cirrosis Hepática Experimental/inducido químicamente , Cirrosis Hepática Experimental/genética , Masculino , Ratones , Ratones Noqueados , Fosfofructoquinasa-2/genética , Cultivo Primario de Células , Proteínas de Unión al ARN/genética , Ratas , Regulación hacia Arriba
3.
Adv Exp Med Biol ; 1122: 73-100, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30937864

RESUMEN

This review chapter describes the current knowledge about the nature of pericytes in the gut, their interaction with endothelial cells in blood vessels, and their pathophysiological functions in the setting of chronic liver disease. In particular, it focuses on the role of these vascular cell types and related molecular signaling pathways in pathological angiogenesis associated with liver disease and in the establishment of the gut-vascular barrier and the potential implications in liver disease through the gut-liver axis.


Asunto(s)
Tracto Gastrointestinal/citología , Neovascularización Patológica , Pericitos/citología , Transducción de Señal , Vasos Sanguíneos/citología , Células Endoteliales/citología , Humanos , Hepatopatías
4.
Sci Rep ; 7(1): 14791, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29093528

RESUMEN

Development of portosystemic collateral vessels and gastroesophageal varices is responsible for the most serious clinical consequences of portal hypertension, but effective clinical therapies are limited. Here we developed and investigated the therapeutic potential of an innovative liposomally-formulated short-interfering RNA (siRNA) technology based on clinical stage components, capable to attenuate production of the endothelial kinase insert domain receptor (KDR), which controls portosystemic collateralization and contributes to disease progression and aggravation. These siRNAs were first validated in vitro, and then, their therapeutic potential on portosystemic collateralization and pathological angiogenesis was tested in vivo in mouse models of portal hypertension (portal vein-ligation). siRNAKDR-lipoplexes efficiently transported siRNAKDR to vascular endothelial cells in mesenteric microvenules and portal vein of portal hypertensive mice, where collaterogenesis and angiogenesis take place. This systemic treatment significantly downregulated pathological KDR overexpression, without causing complete KDR knockout, preserving homeostatic baseline KDR levels and thus limiting adverse effects. siRNAKDR-lipoplex-induced endothelial-specific KDR knockdown drastically reduced by 73% the portosystemic collateralization, and impaired the pathologic angiogenic potential of vascular endothelial cells at different levels (cell proliferation, sprouting and remodeling). Targeting endothelial KDR with therapeutic siRNAKDR-lipoplexes could be a promising and plausible treatment modality for attenuating the formation of portosystemic collaterals in a clinical setting.


Asunto(s)
Endotelio Vascular , Hipertensión Portal , Neovascularización Patológica , ARN Interferente Pequeño , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Animales , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Humanos , Hipertensión Portal/genética , Hipertensión Portal/metabolismo , Hipertensión Portal/patología , Hipertensión Portal/terapia , Masculino , Ratones , Ratones Endogámicos BALB C , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Neovascularización Patológica/terapia , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptor 2 de Factores de Crecimiento Endotelial Vascular/biosíntesis , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...