Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Res ; 252(Pt 3): 118933, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38642645

RESUMEN

Indole-3-acetic acid (IAA) derived from Actinobacteria fermentations on agro-wastes constitutes a safer and low-cost alternative to synthetic IAA. This study aims to select a high IAA-producing Streptomyces-like strain isolated from Lake Oubeira sediments (El Kala, Algeria) for further investigations (i.e., 16S rRNA gene barcoding and process optimization). Subsequently, artificial intelligence-based approaches were employed to maximize IAA bioproduction on spent coffee grounds as high-value-added feedstock. The specificity was the novel application of the Limited-Memory Broyden-Fletcher-Goldfarb-Shanno Box (L-BFGS-B) optimization algorithm. The new strain AW08 was a significant producer of IAA (26.116 ± 0.61 µg/mL) and was identified as Streptomyces rutgersensis by 16S rRNA gene barcoding and phylogenetic inquiry. The empirical data involved the inoculation of AW08 in various cultural conditions according to a four-factor Box Behnken Design matrix (BBD) of Response surface methodology (RSM). The input parameters and regression equation extracted from the RSM-BBD were the basis for implementing and training the L-BFGS-B algorithm. Upon training the model, the optimal conditions suggested by the BBD and L-BFGS-B algorithm were, respectively, L-Trp (X1) = 0.58 %; 0.57 %; T° (X2) = 26.37 °C; 28.19 °C; pH (X3) = 7.75; 8.59; and carbon source (X4) = 30 %; 33.29 %, with the predicted response IAA (Y) = 152.8; 169.18 µg/mL). Our findings emphasize the potential of the multifunctional S. rutgersensis AW08, isolated and reported for the first time in Algeria, as a robust producer of IAA. Validation investigations using the bioprocess parameters provided by the L-BFGS-B and the BBD-RSM models demonstrate the effectiveness of AI-driven optimization in maximizing IAA output by 5.43-fold and 4.2-fold, respectively. This study constitutes the first paper reporting a novel interdisciplinary approach and providing insights into biotechnological advancements. These results support for the first time a reasonable approach for valorizing spent coffee grounds as feedstock for sustainable and economic IAA production from S. rutgersensis AW08.


Asunto(s)
Inteligencia Artificial , Ácidos Indolacéticos , ARN Ribosómico 16S , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Ácidos Indolacéticos/metabolismo , ARN Ribosómico 16S/genética , Argelia , Filogenia
2.
Curr Res Microb Sci ; 6: 100225, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38380107

RESUMEN

Agricultural crop residues include leftover and unmarketable materials, such as crop stover, weeds, leaf litter, sawdust, forest litter, and livestock manure originating from crop cultivation, and post-harvest activities. Such residues are a storehouse of plant nutrients and several other resources and therefore need to be managed in an environment- friendly manner with minimum loss of plant nutrients and other resources that can be recovered. Microbial starter consortia are a key component in the rapid recycling of farm residue wastes and the production of other valuable products, such as biogas, bioethanol/biofuel, enzymes, molecules, and metabolites. Recent advances in microbial biotechnology can also facilitate the conversion of farm residues into economically valuable materials, i.e. soil additives, adsorbents, energy, and enzymes, thereby contributing to a circular economy. This special issue attempts to compile the latest advancements in the field of agricultural crop residue management for enhanced nutrient recycling and resource recovery by the use of compost starters and inoculant formulations.

3.
Plants (Basel) ; 13(3)2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38337919

RESUMEN

Soilborne pathogens reduce 60% of the yield of onion crops. A common fungal pathogen causing wilt disease and severe losses is Fusarium basal rot (FBR). In this study, the combination of Arbuscular Mycorrhizal Fungi (AMF) with Trichoderma harzianum was investigated against FBR. Onion samples were collected from the Ankara-Polatli region. Among the isolates, isolate S6 was identified as F. oxysporum f. sp. cepae (FOC) using morphological and molecular methods and pathogenicity tests. Different combinations of AMF (Funneliformis mosseae pure strain and the commercial AMF) and T. harzianum were inoculated on susceptible onion cultivars (Seç, Gence, and Sampiyon). The effects of the treatments on FOC biocontrol were studied under growth chamber conditions. The results showed that Sampiyon was the most resistant, while Gence was the most susceptible to basal rot disease. Different colonization rates (8.91-24%), spore densities (16.4-50.4 spore/10 g soil), and the extent to which a plant needs mycorrhizal conditions to grow to its maximum potential (i.e., mycorrhizal dependencies-18.3-51.9%) were recorded by treatment. Both single and combined applications of AMF and Trichoderma applications suppressed FOC. Suppressive effects were more pronounced when the F. mosseae pure strain was used alone (when F. mosseae was used, disease severity decreased from 90 to 68%, p < 0.05). The F. mosseae pure strain also showed the best plant growth promotion and phosphorus content release. The results indicate an interesting potential use of F. mosseae and the combination of AMF with T. harzianum in the management of FOC in onions.

4.
J Fungi (Basel) ; 9(8)2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37623616

RESUMEN

Monitoring the dynamics of the spore bank of arbuscular mycorrhizal fungi (AMF) is essential for the sustainable management and protection of agroecosystems. The most common method for extracting AMF spores from soil is the wet-sieving technique (WST). However, this method has many disadvantages. In this study, we modified the WST using new approaches: the ultrasound wet-sieving technique (UWST) and the ultrasound centrifuge technique (UCT). We enumerated and compared the numbers and quality of spores obtained from WST, UWST, and UCT to validate the new modified techniques. We extracted AMF spores from the rhizospheres of different plants, including wheat (Triticum aestivum L.), bean (Phaseolus vulgaris L.), tomato (Solanum lycopersicum L.), pepper (Piper nigrum L.), parsley (Petroselinum crispum Mill.), and turfgrass (Lolium perenne L.) collected from the Van Lake basin, Turkey. The highest and lowest AMF spore numbers were observed in wheat and turfgrass rhizospheres. The UCT allowed for the extraction of the highest number of spores from all rhizospheres, followed by the UWST and WST. The UWST and WST allowed for the extraction of similar spore numbers from wheat, pepper, parsley, and turfgrass rhizospheres. Beyond the high extracted spore number, UCT was shown to be a fast and low-material-consuming approach. These findings demonstrate that the UCT can be used to efficiently extract AMF spores in future research.

5.
Microorganisms ; 11(6)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37374910

RESUMEN

With the expansion of the green products market and the worldwide policies and strategies directed toward a green revolution and ecological transition, the demand for innovative approaches is always on the rise. Among the sustainable agricultural approaches, microbial-based products are emerging over time as effective and feasible alternatives to agrochemicals. However, the production, formulation, and commercialization of some products can be challenging. Among the main challenges are the industrial production processes that ensure the quality of the product and its cost on the market. In the context of a circular economy, solid-state fermentation (SSF) might represent a smart approach to obtaining valuable products from waste and by-products. SSF enables the growth of various microorganisms on solid surfaces in the absence or near absence of free-flowing water. It is a valuable and practical method and is used in the food, pharmaceutical, energy, and chemical industries. Nevertheless, the application of this technology in the production of formulations useful in agriculture is still limited. This review summarizes the literature dealing with SSF agricultural applications and the future perspective of its use in sustainable agriculture. The survey showed good potential for SSF to produce biostimulants and biopesticides useful in agriculture.

6.
Plant Physiol Biochem ; 196: 103-120, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36706690

RESUMEN

The current review aims to gain knowledge on the biosynthesis and characterization of nanoparticles (NPs), their multifactorial role, and emerging trends of NPs utilization in modern science, particularly in sustainable agriculture, for increased yield to solve the food problem in the coming era. However, it is well known that an environment-friendly resource is in excessive demand, and green chemistry is an advanced and rising resource in exploring eco-friendly processes. Plant extracts or other resources can be utilized to synthesize different types of NPS. Hence NPs can be synthesized by organic or inorganic molecules. Inorganic molecules are hydrophilic, biocompatible, and highly steady compared to organic types. NPs occur in numerous chemical conformations ranging from amphiphilic molecules to metal oxides, from artificial polymers to bulky biomolecules. NPs structures can be examined by different approaches, i.e., Raman spectroscopy, optical spectroscopy, X-ray fluorescence, and solid-state NMR. Nano-agrochemical is a unification of nanotechnology and agro-chemicals, which has brought about the manufacture of nano-fertilizers, nano-pesticides, nano-herbicides, nano-insecticides, and nano-fungicides. NPs can also be utilized as an antimicrobial solution, but the mode of action for antibacterial NPs is poorly understood. Presently known mechanisms comprise the induction of oxidative stress, the release of metal ions, and non-oxidative stress. Multiple modes of action towards microbes would be needed in a similar bacterial cell for antibacterial resistance to develop. Finally, we visualize multidisciplinary cooperative methods will be essential to fill the information gap in nano-agrochemicals and drive toward the usage of green NPs in agriculture and plant science study.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Nanopartículas/química , Agricultura/métodos , Nanotecnología , Antibacterianos , Medición de Riesgo , Nanopartículas del Metal/química
7.
Plants (Basel) ; 13(1)2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38202393

RESUMEN

This study investigated the in vitro simulated gastrointestinal digestion (GID) effects on wild and micropropagated Apennines Genepì infusions. Wild and micropropagated infusions were compared for their antioxidant activity, phenolic contents, and polyphenolic profiles before and after GID. Before digestion, the wild infusions had higher amounts of phenolic compounds and antioxidant activity than the micropropagated ones. Instead, after digestion, the differences in the total phenolic content (TPC) and antioxidant activity between wild and micropropagated infusions were less pronounced. The changes in the TPC and phenolic profiles revealed the presence of several chemical transformations and rearrangements that resulted in compounds with different reactivity and antioxidant potential. Without enzyme actions, the wild infusion digest undergoes higher modifications than those obtained from the micropropagated ones. The current study offers the first concrete proof of the impact of GID on the polyphenolic chemicals present in infusions of wild and micropropagated Apennines Genepì and their antioxidant properties. Our findings are essential for future in-depth analyses of Apennine Genepì infusions and their potential impacts on human health.

8.
AIMS Microbiol ; 9(4): 692-711, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38173968

RESUMEN

Numerous microbial species participate in precipitation of carbonates in various natural environments, including soils, geological formations, freshwater biofilms and oceans. Despite the geochemical interest of such a biomineralization process, its molecular mechanisms and adaptive aspects remain poorly known. Many Gram-negative bacteria use cell-to-cell communication systems relying on N-acylhomoserine lactone (AHLs) signal molecules to express certain phenotypic traits in a density-dependent manner, a phenomenon referred as to quorum-sensing (QS). In this work, bacterial isolates collected from cave and rhizosphere soil were analyzed to study the occurrence of the AHL-mediated QS in bacterial calcium carbonate (CaCO3) precipitation. To test the production of AHLs signal molecules, we cross-streaked Gram-negative calcifying strains, selected among the environmental strains studied, with the AHL-negative mutant Chromobacterium subtsugae strain CV026. Only Burkholderia ambifaria LMG 11351 was able to restore violacein production in CV026 among the tested strains. The constructed AHL-negative mutant of B. ambifaria LMG 11351 could not precipitate CaCO3 on B-4 agar. Scanning Electron Microscopy (SEM) analysis on CaCO3 crystals obtained in vitro shows crystals of different morphologies, calcified biofilms and bacteria in close contact with the precipitated crystals. In the inner layers of the bioliths deposited by B. ambifaria LMG 11351, a stream-like organization of the Burkholderia imprints was not detected by SEM. Our data provide preliminary evidence that the activation of AHL-regulated genes may be a prerequisite for in vitro bacterial carbonatogenesis, in some cases, confirming the specific role of bacteria as CaCO3 precipitating agents. We enhance the understanding of bacterial CaCO3 biomineralization and its potential biotechnology implications for QS-based strategies to enhance or decrease CaCO3 precipitation through specific bacterial processes. The AHL-negative mutant of B. ambifaria LMG 11351 (a well-known plant growth-promoting bacterium) could also be used to study plant-bacteria interactions. The adaptive role of bacterial CaCO3 biomineralization was also discussed.

9.
Sci Rep ; 12(1): 19405, 2022 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-36371463

RESUMEN

This study revealed how Bacteria and Archaea communities and their metabolic functions differed between two groups of black deposits identified in gorge and cave environments. Scanning electron microscopy coupled with energy dispersive spectroscopy was used to analyse the presence of microbial biosignatures and the elemental composition of samples. Metabarcoding of the V3-V4 regions of 16S rRNA was used to investigate Bacteria and Archaea communities. Based on 16S rRNA sequencing results, PICRUSt software was used to predict metagenome functions. Micrographs showed that samples presented microbial biosignatures and microanalyses highlighted Mn concretions and layers on Al-Si surfaces. The 16S rRNA metabarcoding alpha-diversity metrics showed similar Simpson's and Shannon indices and different values of the Chao-1 index. The amplicon sequence variants (ASVs) analysis at the different taxonomic levels showed a diverse genera composition. However, the communities of all samples shared the presence of uncultured ASVs belonging to the Gemmatales family (Phylogenesis: Gemmataceae; Planctomycetes; Planctomycetota; Bacteria). The predicted metagenome functions analysis revealed diverse metabolic profiles of the Cave and Gorge groups. Genes coding for essential Mn metabolism were present in all samples. Overall, the findings on structure, microbiota, and predicted metagenome functions showed a similar microbial contribution to epigean and hypogean black deposits Mn metabolism.


Asunto(s)
Metagenoma , Microbiota , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Biología Computacional , Microbiota/genética , Bacterias , Filogenia , Archaea/genética
10.
Front Microbiol ; 13: 933398, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35966678

RESUMEN

This study aimed to estimate the green formation lampenflora of "Stiffe" caves in order to evaluate their suitability as an isolation source of cyanobacteria useful for the production of polyhydroxyalkanoates (PHAs). The cave system was chosen as the sampling site due to its touristic use and the presence of high-impact illuminations. The biofilms and the mats of the illuminated walls were sampled. Samples were investigated by 16S rRNA gene analysis and culturable cyanobacteria isolation. The isolated strains were then screened for the production of PHAs under typical culturing and nutritional starvation. Cultures were checked for PHA accumulation, poly-ß-hydroxybutyrate (PHB) presence (infrared spectroscopy), and pigment production. The 16S rRNA gene metabarcoding. Highlighted a considerable extent of the pressure exerted by anthropogenic activities. However, the isolation yielded eleven cyanobacteria isolates with good PHA (mainly PHB)-producing abilities and interesting pigment production rates (chlorophyll a and carotenoids). Under normal conditions (BG110), the accumulation abilities ranged from 266 to 1,152 ng mg dry biomass-1. The optimization of bioprocesses through nutritional starvation resulted in a 2.5-fold increase. Fourier transform infrared (FTIR) studies established the occurrence of PHB within PHAs extracted by cyanobacteria isolates. The comparison of results with standard strains underlined good production rates. For C2 and C8 strains, PHA accumulation rates under starvation were higher than Azospirillum brasilense and similar to Synechocystis cf. salina 192. This study broadened the knowledge of the microbial communities of mats and biofilms on the lightened walls of the caves. These findings suggested that these structures, which are common in tourist caves, could be used to isolate valuable strains before remediation measures are adopted.

11.
Biology (Basel) ; 11(8)2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36009831

RESUMEN

The present study explored the microbial diversity of black deposits found in the "Infernaccio" gorge. X-ray Powdered Diffraction (XRPD) was used to investigate the crystallinity of the samples and to identify the minerals. Scanning electron microscope and energy-dispersive X-ray spectroscopy (SEM-EDS) were used to detect the bacterial imprints, analyze microbe-mineral interactions, and highlight the chemical element distribution in the black deposits. 16S rRNA gene metabarcoding allowed the study of Archaea and Bacteria communities. Mn-oxide-solubilizing isolates were also obtained and characterized by culturable and molecular approaches. The multidisciplinary approach showed the occurrence of deposits composed of birnessite, diopside, halloysite, and leucite. Numerous bacterial imprints confirmed the role of microorganisms in forming these deposits. The Bacteria and Archaea communities associated with these deposits and runoff waters are dynamic and shaped by seasonal changes. The uncultured and unknown taxa are the most common and abundant. These amplicon sequence variants (ASVs) were mainly assigned to Proteobacteria and Bacteroidetes phyla. Six isolates showed interesting Mn solubilization abilities under microaerophilic conditions. Molecular characterization associated isolates to Brevibacterium, Bacillus, Neobacillus, and Rhodococcus genera. The findings enriched our knowledge of geomicrobiological aspects of one of the Earth's hidden habitats. The study also unveiled the potential of this environment as an isolation source of biotechnologically relevant bacteria.

12.
Microorganisms ; 10(2)2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35208907

RESUMEN

The environmental conditions of caves shape microbiota. Within caves' microbial communities, actinomycetes are among the most abundant bacteria. Cave actinomycetes have gained increasing attention during the last decades due to novel bioactive compounds with antibacterial, antioxidant and anticancer activities. However, their potential role in soil environments is still unknown. This review summarises the literature dealing with actinomycetes from caves, underlining for the first time their potential roles in soil environments. We provide an overview of their diversity and biotechnological properties, underling their potential role in soil environments applications. The contribution of caves' actinomycetes in soil fertility and bioremediation and crops biostimulation and biocontrol are discussed. The survey on the literature show that several actinomycetes genera are present in cave ecosystems, mainly Streptomyces, Micromonospora, and Nocardiopsis. Among caves' actinomycetes, Streptomyces is the most studied genus due to its ubiquity, survival capabilities, and metabolic versatility. Despite actinomycetes' outstanding capabilities and versatility, we still have inadequate information regarding cave actinomycetes distribution, population dynamics, biogeochemical processes, and metabolisms. Research on cave actinomycetes needs to be encouraged, especially concerning environmental soil applications to improve soil fertility and health and to antagonise phytopathogens.

13.
Plants (Basel) ; 10(11)2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34834799

RESUMEN

Industrial hemp (Cannabis sativa L.) is a multipurpose plant used in several fields. Several phytopathogens attack hemp crops. Fusarium oxysporum is a common fungal pathogen that causes wilt disease in nurseries and in field cultivation and causes high losses. In the present study, a pathogenic strain belonging to F. oxysporum f. sp. cannabis was isolated from a plant showing Fusarium wilt. After isolation, identification was conducted based on morphological and molecular characterizations and pathogenicity tests. Selected plant growth-promoting bacteria with interesting biocontrol properties-Azospirillum brasilense, Gluconacetobacter diazotrophicus, Herbaspirillum seropedicae and Burkholderia ambifaria-were tested against this pathogen. In vitro antagonistic activity was determined by the dual culture method. Effective strains (in vitro inhibition > of 50%) G. diazotrophicus, H. seropedicae and B. ambifaria were combined in a consortium and screened for in planta antagonistic activity in pre-emergence (before germination) and post-emergence (after germination). The consortium counteracted Fusarium infection both in pre-emergence and post-emergence. Our preliminary results show that the selected consortium could be further investigated as an effective biocontrol agent for the management of this pathogen.

14.
Pathogens ; 10(10)2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34684253

RESUMEN

Biotic stress caused by pathogenic microorganisms leads to damage in crops. Tomato and carrot are among the most important vegetables cultivated worldwide. These plants are attacked by several pathogens, affecting their growth and productivity. Fourteen plant growth-promoting actinomycetes (PGPA) were screened for their in vitro biocontrol activity against Solanum lycopersicum and Daucus carota microbial phytopathogens. Their antifungal activity was evaluated against Fusarium oxysporum f. sp. radicis-lycopersici (FORL) and Rhizoctonia solani (RHS). Antibacterial activity was evaluated against Pseudomonas syringae, Pseudomonas corrugata, Pseudomonas syringae pv. actinidiae, and Pectobacterium carotovorum subsp. carotovorum. Strains that showed good in vitro results were further investigated in vitro (cell-free supernatants activity, scanning electron microscope observations of fungal inhibition). The consortium of the most active PGPA was then utilized as biocontrol agents in planta experiments on S. lycopersicum and D. carota. The Streptomyces albidoflavus H12 and Nocardiopsis aegyptica H14 strains showed the best in vitro biocontrol activities. The diffusible and volatile compounds and cell-free supernatants of these strains showed both antifungal (in vitro inhibition up to 85%, hyphal desegregation and fungicidal properties) and antibacterial activity (in vitro inhibition >25 mm and bactericidal properties). Their consortium was also able to counteract the infection symptoms of microbial phytopathogens during in planta experiments, improving plant status. The results obtained highlight the efficacy of the selected actinomycetes strains as biocontrol agents of S. lycopersicum and D. carota.

15.
Molecules ; 26(16)2021 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-34443356

RESUMEN

Within the unavoidable variability of various origins in the characteristics of essential oils, the aim of this study was to evaluate the effect of the distillation time on the chemical composition and biological activity of Cannabis sativa essential oils (EOs). The dry inflorescences came from Carmagnola, Kompolti, Futura 75, Gran Sasso Kush and Carmagnola Lemon varieties from Abruzzo region (Central Italy), the last two being new cultivar here described for the first time. EOs were collected at 2 h and 4 h of distillation; GC/MS technique was applied to characterize their volatile fraction. The EOs were evaluated for total polyphenol content (TPC), antioxidant capacity (AOC) and antimicrobial activity against food-borne pathogens and spoilage bacteria. The time of distillation particularly influenced EOs chemical composition, extracting more or less terpenic components, but generally enriching with minor sesquiterpenes and cannabidiol. A logical response in ratio of time was observed for antioxidant potential, being the essential oils at 4 h of distillation more active than those distilled for 2 h, and particularly Futura 75. Conversely, except for Futura 75, the effect of time on the antimicrobial activity was variable and requires further investigations; nevertheless, the inhibitory activity of all EOs against Pseudomonas fluorescens P34 was an interesting result.


Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Cannabis/química , Aceites Volátiles/química , Aceites Volátiles/farmacología , Polifenoles/análisis , Factores de Tiempo
16.
Microorganisms ; 9(3)2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33808642

RESUMEN

The present work was aimed at investigating the effects of a four bacterial strain consortium-Azospirillum brasilense, Gluconacetobacter diazotrophicus, Herbaspirillum seropedicae, and Burkholderia ambifaria-on Allium cepa L. and on soil health. The bacterial consortium was inoculated on seeds of two different onion varieties; inoculated and Control seeds (treated with autoclaved inoculum) were sown in an open-field and followed until harvest. Plant growth development parameters, as well as soil physico-chemical and molecular profiles (DNA extraction and 16S community sequencing on the Mi-Seq Illumina platform), were investigated. The results showed a positive influence of bacterial application on plant growth, with increased plant height (+18%), total chlorophylls (+42%), crop yields (+13%), and bulb dry matter (+3%) with respect to the Control. The differences between Control and treatments were also underlined in the bulb extracts in terms of total phenolic contents (+25%) and antioxidant activities (+20%). Soil fertility and microbial community structure and diversity were also positively affected by the bacterial inoculum. At harvest, the soil with the presence of the bacterial consortium showed an increase in total organic carbon, organic matter, and available phosphorus, as well as higher concentrations of nutrients than the Control. The ecological indexes calculated from the molecular profiles showed that community diversity was positively affected by the bacterial treatment. The present work showed the effective use of plant growth-promoting bacteria as a valid fertilization strategy to improve yield in productive landscapes whilst safeguarding soil biodiversity.

17.
Nat Prod Res ; 35(24): 6020-6024, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32865042

RESUMEN

In the present work, Cannabis sativa L. cv Futura 75 inflorescences, cultivated in the Abruzzo territory, were characterized for their volatile fraction through SPME-GC-MS. In addition, the essential oil extracted from these inflorescences was investigated for the antioxidant potentialities and for the terpenic profile. The antibacterial activity of hemp essential oil (HEO) against some pathogenic and spoilage microorganisms isolated from food was also evaluated by determining the minimal inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC). The results showed significant antioxidant capacity (DPPH: 63.38 ± 0.08 mg TE/g HEO; FRAP: 438.52 ± 6.92 mg TE/g HEO) alongside good antibacterial activity against Gram-positive bacteria such as S. aureus and L. monocytogenes (MIC 1.25-5 µL/mL). The results obtained suggest that hemp essential oil can inhibit or reduce bacterial growth, also exerting antioxidant activity, and therefore it can find an advantageous application in the food processing field.


Asunto(s)
Cannabis , Aceites Volátiles , Antibacterianos/farmacología , Antioxidantes/farmacología , Pruebas de Sensibilidad Microbiana , Aceites Volátiles/farmacología , Staphylococcus aureus
18.
Foods ; 9(9)2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32887367

RESUMEN

Appropriate and standardized techniques for the extraction of secondary metabolites with interesting biological activity from plants are required. In this work, a comparison of different conventional and unconventional extraction techniques (maceration-M, Soxhlet-S, ultrasound assisted extraction-UAE, and rapid solid-liquid dynamic extraction-RSLDE) was investigated. Bioactive compounds were extracted from Thymus vulgaris L. (thyme), Cannabis sativa L. (industrial hemp) and Coriandrum sativum L. (coriander) and chemically characterized for their volatile fraction and polyphenolic content by means of gas chromatography-mass spectrometry (GC-MS) and high performance liquid chromatography-ultraviolet (HPLC-UV). Linalool (48.19%, RSLDE) and carvacrol (21.30%, M) for thyme, caryophyllene (54.78%, S) and humulene (14.13%, S) for hemp, and linalool (84.16%, RSLDE) for coriander seeds were the main compounds among terpenes, while thyme was the richest source of polyphenols with rosmarinic acid (51.7 mg/g dry extract-S), apigenin (7.6 mg/g dry extract-S), and luteolin (4.1 mg/g dry extract-UAE) being the most abundant. In order to shed light on their potential as natural food preservatives, the biological activity of the extracts was assessed in terms of antioxidant activity (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid-ABTS˙+, ferric reducing antioxidant power-FRAP, 2,2-diphenyl-1-picrylhydrazyl-DPPH˙ assays) and phenolic content (Folin-Ciocâlteu method). For thyme, Soxhlet extracts showed best performances in FRAP and ABTS˙+ assays (74 mg TE/g dry extract and 134 mg TE/g dry extract, respectively), while Soxhlet and RSLDE extracts recorded similar activity in DPPH˙ (107-109 mg TE/g dry extract). For hemp and coriander, indeed, RSLDE extracts accounted for higher antioxidant activity as evidenced by FRAP (80 mg TE/g dry extract and 18 mg TE/g dry extract, respectively) and ABTS˙+ (557 mg TE/g dry extract and 48 mg TE/g dry extract, respectively) assays. With respect to DPPH˙, the best results were observed for UAE extracts (45 mg TE/g dry extract and 220 mg TE/g dry extract, respectively). Our findings suggest that all the investigated techniques are valid extraction methods to retain bioactive compounds and preserve their activity for application in food and pharmaceutical formulations. Among them, the innovative RSLDE stands out for the slightly higher antioxidant performances of the extracts, coupled with the facility of use and standardization of the extraction process.

19.
FEMS Microbiol Lett ; 367(13)2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32562424

RESUMEN

Potatoes (Solanum tuberosum L.) and tomatoes (Solanum lycopersicum L.), among the main crops belonging to the Solanaceae family, are attacked by several pathogens. Among them Fusarium oxysporum f. sp. radicis-lycopersici and Rhizoctonia solani are very common and cause significant losses. Four plant growth-promoting rhizobacteria, Azospirillum brasilense, Gluconacetobacter diazotrophicus, Herbaspirillum seropedicae and Burkholderia ambifaria were tested against these pathogens. In vitro antagonistic activities of single strains were assessed through dual culture plates. Strains showing antagonistic activity (G. diazotrophicus, H. seropedicae and B. ambifaria) were combined and, after an in vitro confirmation, the consortium was applied on S. lycopersicum and S. tuberosum in a greenhouse pot experiment. The bioprotection was assessed in pre-emergence (infection before germination) and post-emergence (infection after germination). The consortium was able to successfully counteract the infection of both F. oxysporum and R. solani, allowing a regular development of plants. The biocontrol of the fungal pathogens was highlighted both in pre-emergence and post-emergence conditions. This selected consortium could be a valid alternative to agrochemicals and could be exploited as biocontrol agent to counteract losses due to these pathogenic fungi.


Asunto(s)
Antibiosis/fisiología , Fenómenos Fisiológicos Bacterianos , Hongos/fisiología , Control Biológico de Vectores/métodos , Solanum lycopersicum/microbiología , Solanum tuberosum/microbiología
20.
Foods ; 7(2)2018 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-29393893

RESUMEN

In the present study, the essential oils (EOs) of some officinal plants from Abruzzo territory (Italy) were evaluated for their antimicrobial and antioxidant activities and their volatile fraction chemical characterization. The EOs were extracted from Rosmarinus officinalis, Origanum vulgare, Salvia officinalis, Mentha piperita, Allium sativum, Foeniculum vulgare, Satureja montana, Thymus vulgaris and Coriandrum sativum seeds. The antimicrobial activity was screened against thirteen Gram-positive and Gram-negative strains to determine the Minimal Inhibitory Concentration (MIC). The total phenolic content (TPC) and the antioxidant capacity (AOC) were assessed by means of Folin-Ciocâlteu method, and Trolox Equivalent Antioxidant Capacity with 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (TEAC/ABTS), Ferric Reducing Antioxidant Power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays respectively. Among the nine EOs tested, T. vulgaris, S. montana, O. vulgare and C. sativum EOs showed MIC values ranging from 0.625 to 5 µL/mL. The AOC and TPC results for these species were also interesting. The major components for these EOs were thymol for T. vulgaris (44%) and O. vulgare (40%), linalool (77%) for C. sativum, and carvacrol for S. montana (54%). The results allowed the study to establish that these EOs are good candidates for potential application as biopreservatives in foods and/or food manufacture environments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...