Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JACC Basic Transl Sci ; 7(6): 582-596, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35818505

RESUMEN

Cardiorenal syndrome type 2 (CRS2) is defined as a chronic cardiovascular disease, usually chronic heart failure (CHF), resulting in chronic kidney disease. We hypothesized that the cardiac spinal afferent reflex (CSAR) plays a critical role in the development of CRS2. Our data suggest that cardiac afferent ablation by resiniferatoxin not only improves cardiac function but also benefits the kidneys and increases long-term survival in the myocardial infarction model of CHF. We also found that renal denervation has a similar reno-protective effect in CHF rats. We believe this novel work contributes to the development of a unique neuromodulation therapy to treat CHF patients.

2.
Heliyon ; 8(1): e08847, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35141435

RESUMEN

INTRODUCTION: A systematic analysis of clinical trials was performed in order to assess the effectiveness and risks of bilateral renal denervation (RDN) in patients with chronic heart failure with reduced ejection fraction (HFrEF). METHODS: A systematic review was conducted of all clinical trials exploring the effectiveness of RDN in patients with HF who had reduced (<50%) EF. Primary outcomes were NYHA class, 6-min walk test, N-terminal pro-B-type natriuretic peptide (NT-proBNP) levels, left ventricular ejection fraction (LVEF) and other cardiac parameters including left ventricular end-systolic diameter (LVESD), left ventricular end-diastolic diameter (LVEDD), and left atrium diameter (LAD). Secondary outcomes were systolic blood pressure (SBP), diastolic blood pressure (DBP), heart rate (HR), glomerular filtration rate (GFR), and creatinine. RESULTS: Seven studies were included in this analysis. From baseline to 6 months after RDN, the pooled mean NYHA class was decreased (mean difference [MD], -0.9; 95% confidence interval [CI], -1.6 to -0.2; P = 0.018), the mean 6-min walk test was increased (MD, 79.5 m; 95% CI, 26.9 to 132.1; P = 0.003), and the average NT-proBNP level was decreased (MD, -520.6 pg/mL; 95% CI, -1128.4 to 87.2; P = 0.093). Bilateral RDN increased the LVEF (MD, 5.7%; 95% CI, 1.6 to 9.6; P = 0.004), decreased the LVESD (MD, -0.4 cm; 95% CI, -0.5 to -0.2; P < 0.001), decreased the LVEDD (MD, -0.5 cm; 95% CI, -0.6 to -0.3; P < 0.001), and decreased the LAD (MD, -0.4 cm; 95% CI, -0.8 to 0; P = 0.045). In addition, RDN significantly decreased systolic BP (MD, -9.4 mmHg; 95% CI, -16.3 to -2.4; P = 0.008) and diastolic BP (MD, -4.9 mmHg; 95% CI, -9.5 to -0.4; P = 0.033), and decreased HR (MD, -4.5 bpm; 95% CI, -8.2to -0.9; P = 0.015). RDN did not significantly change GFR (MD, 7.9; 95% CI, -5.0 to 20.8; P = 0.230), or serum creatinine levels (MD, -7.2; 95% CI, -23.7 to 9.4; P = 0.397). CONCLUSION: Bilateral RDN appears safe and well-tolerated in patients with HF. RDN improved the signs and symptoms of HF and slightly decreased systolic and diastolic BP without affecting renal function in the clinical trials performed to date.

3.
J Am Coll Cardiol ; 73(23): 3006-3017, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31196459

RESUMEN

Three recent renal denervation studies in both drug-naïve and drug-treated hypertensive patients demonstrated a significant reduction of ambulatory blood pressure compared with respective sham control groups. Improved trial design, selection of relevant patient cohorts, and optimized interventional procedures have likely contributed to these positive findings. However, substantial variability in the blood pressure response to renal denervation can still be observed and remains a challenging and important problem. The International Sympathetic Nervous System Summit was convened to bring together experts in both experimental and clinical medicine to discuss the current evidence base, novel developments in our understanding of neural interplay, procedural aspects, monitoring of technical success, and others. Identification of relevant trends in the field and initiation of tailored and combined experimental and clinical research efforts will help to address remaining questions and provide much-needed evidence to guide clinical use of renal denervation for hypertension treatment and other potential indications.


Asunto(s)
Monitoreo Ambulatorio de la Presión Arterial/tendencias , Congresos como Asunto/tendencias , Hipertensión/cirugía , Internacionalidad , Riñón/inervación , Simpatectomía/tendencias , Presión Sanguínea/fisiología , Desnervación/métodos , Desnervación/tendencias , Humanos , Hipertensión/diagnóstico , Hipertensión/fisiopatología , Riñón/fisiología , Ensayos Clínicos Controlados Aleatorios como Asunto/métodos , Literatura de Revisión como Asunto , Simpatectomía/métodos , Sistema Nervioso Simpático/fisiología , Sistema Nervioso Simpático/fisiopatología
4.
Hypertension ; 68(5): 1271-1280, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27672026

RESUMEN

Elevated sympathetic tone and activation of the renin-angiotensin system are pathophysiologic hallmarks of hypertension, and the interactions between these systems are particularly deleterious. The importance of Rho kinase as a mediator of the effects of angiotensin-II (AngII) in the periphery is clear, but the role of Rho kinase in sympathoexcitation caused by central AngII is not well established. We hypothesized that AngII mediates its effects in the brain by the activation of the RhoA/Rho kinase pathway. Chronically instrumented, conscious rabbits received the following intracerebroventricular infusion treatments for 2 weeks via osmotic minipump: AngII, Rho kinase inhibitor Fasudil, AngII plus Fasudil, or a vehicle control. AngII increased mean arterial pressure over the course of the infusion, and this effect was prevented by the coadministration of Fasudil. AngII increased cardiac and vascular sympathetic outflow as quantified by the heart rate response to metoprolol and the depressor effect of hexamethonium; coadministration of Fasudil abolished both of these effects. AngII increased baseline renal sympathetic nerve activity in conscious animals and impaired baroreflex control of sympathetic nerve activity; again Fasudil coinfusion prevented these effects. Each of these end points showed a statistically significant interaction between AngII and Fasudil. Quantitative immunofluorescence of brain slices confirmed that Rho kinase activity was increased by AngII and decreased by Fasudil. Taken together, these data indicate that hypertension, elevated sympathetic outflow, and baroreflex dysfunction caused by central AngII are mediated by Rho kinase activation and suggest that Rho kinase inhibition may be an important therapeutic target in sympathoexcitatory cardiovascular diseases.


Asunto(s)
Angiotensina II/farmacología , Barorreflejo/efectos de los fármacos , Hipertensión/fisiopatología , Quinasas Asociadas a rho/metabolismo , Análisis de Varianza , Angiotensina II/metabolismo , Animales , Barorreflejo/fisiología , Estado de Conciencia/fisiología , Modelos Animales de Enfermedad , Hipertensión/inducido químicamente , Masculino , Conejos , Distribución Aleatoria , Sistema Renina-Angiotensina/fisiología , Sistema Nervioso Simpático/efectos de los fármacos , Sistema Nervioso Simpático/fisiopatología , Quinasas Asociadas a rho/efectos de los fármacos
5.
Am J Physiol Regul Integr Comp Physiol ; 310(2): R156-66, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26538235

RESUMEN

Despite significant clinical interest in renal denervation as a therapy, the role of the renal nerves in the physiological regulation of renal blood flow (RBF) remains debated. We hypothesized that the renal nerves physiologically regulate beat-to-beat RBF variability (RBFV). This was tested in chronically instrumented, healthy rabbits that underwent either bilateral surgical renal denervation (DDNx) or a sham denervation procedure (INV). Artifact-free segments of RBF and arterial pressure (AP) from calmly resting, conscious rabbits were used to extract RBFV and AP variability for time-domain, frequency-domain, and nonlinear analysis. Whereas steady-state measures of RBF, AP, and heart rate did not statistically differ between groups, DDNx rabbits had greater RBFV than INV rabbits. AP-RBF transfer function analysis showed greater admittance gain in DDNx rabbits than in INV rabbits, particularly in the low-frequency (LF) range where systemic sympathetic vasomotion gives rise to AP oscillations. In the LF range, INV rabbits exhibited a negative AP-RBF phase shift and low coherence, consistent with the presence of an active control system. Neither of these features were present in the LF range of DDNx rabbits, which showed no phase shift and high coherence, consistent with a passive, Ohm's law pressure-flow relationship. Renal denervation did not significantly affect nonlinear RBFV measures of chaos, self-affinity, or complexity, nor did it significantly affect glomerular filtration rate or extracellular fluid volume. Cumulatively, these data suggest that the renal nerves mediate LF renal sympathetic vasomotion, which buffers RBF from LF AP oscillations in conscious, healthy rabbits.


Asunto(s)
Riñón/irrigación sanguínea , Arteria Renal/inervación , Circulación Renal , Sistema Nervioso Simpático/fisiología , Animales , Velocidad del Flujo Sanguíneo , Presión Sanguínea , Frecuencia Cardíaca , Homeostasis , Masculino , Modelos Animales , Modelos Cardiovasculares , Dinámicas no Lineales , Conejos , Simpatectomía , Sistema Nervioso Simpático/cirugía , Factores de Tiempo
6.
Front Physiol ; 6: 224, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26300788

RESUMEN

The function of the renal nerves has been an area of scientific and medical interest for many years. The recent advent of a minimally invasive catheter-based method of renal denervation has renewed excitement in understanding the afferent and efferent actions of the renal nerves in multiple diseases. While hypertension has been the focus of much this work, less attention has been given to the role of the renal nerves in the development of chronic heart failure (CHF). Recent studies from our laboratory and those of others implicate an essential role for the renal nerves in the development and progression of CHF. Using a rabbit tachycardia model of CHF and surgical unilateral renal denervation, we provide evidence for both renal efferent and afferent mechanisms in the pathogenesis of CHF. Renal denervation prevented the decrease in renal blood flow observed in CHF while also preventing increases in Angiotensin-II receptor protein in the microvasculature of the renal cortex. Renal denervation in CHF also reduced physiological markers of autonomic dysfunction including an improvement in arterial baroreflex function, heart rate variability, and decreased resting cardiac sympathetic tone. Taken together, the renal sympathetic nerves are necessary in the pathogenesis of CHF via both efferent and afferent mechanisms. Additional investigation is warranted to fully understand the role of these nerves and their role as a therapeutic target in CHF.

8.
Am J Physiol Heart Circ Physiol ; 307(1): H97-109, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24791786

RESUMEN

Heart rate variability (HRV) is a function of cardiac autonomic tone that is widely used in both clinical and animal studies. In preclinical studies, HRV measures are frequently derived using the arterial pulse waveform from an implanted pressure telemetry device, termed pulse rate variability (PRV), instead of the electrocardiogram signal in accordance with clinical guidelines. The acceptability of PRV as a surrogate for HRV in instrumented animals is unknown. Using rabbits implanted with intracardiac leads and chronically implanted pressure transducers, we investigated the correlation and agreement of time-domain, frequency-domain, and nonlinear indexes of HRV and PRV at baseline. We also investigated the effects of ventricular pacing and autonomic blockade on both measures. At baseline, HRV and PRV time- and frequency-domain parameters showed robust correlations and moderate to high agreement, whereas nonlinear parameters showed slightly weaker correlations and varied agreement. Ventricular pacing almost completely eliminated HRV, and spectral analysis of the PRV signal revealed a HRV-independent rhythm. After cardiac autonomic blockade with atropine or metoprolol, the changes in time- and non-normalized frequency-domain measures of PRV continued to show strong correlations and moderate to high agreement with corresponding changes in HRV measures. Blockade-induced changes in nonlinear PRV indexes correlated poorly with HRV changes and showed weak agreement. These results suggest that time- and frequency-domain measures of PRV are acceptable surrogates for HRV even in the context of changing cardiac autonomic tone, but caution should be used when nonlinear measures are a primary end point or when HRV is very low as HRV-independent rhythms may predominate.


Asunto(s)
Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/fisiopatología , Electrocardiografía/métodos , Frecuencia Cardíaca/fisiología , Análisis de la Onda del Pulso/métodos , Animales , Masculino , Conejos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
9.
Am J Physiol Regul Integr Comp Physiol ; 305(8): R886-92, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24005248

RESUMEN

A hallmark of chronic heart failure (CHF) is an increased sympathetic tone resulting in autonomic imbalance. Renal denervation (DNx) in CHF patients has resulted in symptomatic improvement, but the protective mechanisms remain unclear. We hypothesized in CHF, unilateral renal DNx would improve cardiac autonomic balance. The present study used conscious, chronically instrumented New Zealand White rabbits undergoing renal DNx prior to pacing-induced CHF. Four treatment groups were used: nonpace, non-DNx [Sham-Innervated (Sham-INV)], nonpace DNx (sham-DNx), pace non-DNx (CHF-INV) or pace DNx (CHF-DNx). We examined several markers indicative of autonomic balance. Baroreflex sensitivity and time domain heart rate variability (HRV) were both decreased in the CHF-INV group compared with sham-INV and were restored to sham levels by renal DNx. Power spectral analysis indicated an increase in low-frequency/high-frequency (LF/HF) ratio in the CHF-INV compared with the sham-INV, which was normalized to sham levels by DNx. To assess whether this was due to a withdrawal of sympathetic tone or an increase in parasympathetic tone, the heart rate response was measured after an intravenous bolus of metoprolol or atropine. Bradycardia induced by intravenous metoprolol (indicative of cardiac sympathetic tone) was exacerbated in CHF-INV rabbits compared with sham-INV but was normalized in CHF-DNx. Conversely, the tachycardia in response to intravenous atropine (indicative of cardiac vagal tone) was not improved in CHF-DNx vs. CHF-INV animals. Renal DNx also prevented the increase in circulating plasma NE seen in CHF-INV rabbits. These results suggest renal DNx improves cardiac autonomic balance in CHF by a reduction of sympathetic tone.


Asunto(s)
Sistema Nervioso Autónomo/fisiopatología , Insuficiencia Cardíaca/cirugía , Riñón/inervación , Simpatectomía/métodos , Antagonistas de Receptores Adrenérgicos beta 1/farmacología , Animales , Sistema Nervioso Autónomo/efectos de los fármacos , Barorreflejo/efectos de los fármacos , Barorreflejo/fisiología , Corazón/efectos de los fármacos , Corazón/fisiopatología , Insuficiencia Cardíaca/fisiopatología , Frecuencia Cardíaca/efectos de los fármacos , Frecuencia Cardíaca/fisiología , Hemodinámica/efectos de los fármacos , Hemodinámica/fisiología , Riñón/efectos de los fármacos , Riñón/fisiopatología , Masculino , Metoprolol/farmacología , Conejos , Nervio Vago/efectos de los fármacos , Nervio Vago/fisiopatología
10.
Hypertension ; 61(3): 723-9, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23283363

RESUMEN

The small GTPase RhoA and its associated kinase ROCKII are involved in vascular smooth muscle cell contraction and endothelial NO synthase mRNA destabilization. Overactivation of the RhoA/ROCKII pathway is implicated in several pathologies, including chronic heart failure (CHF), and may contribute to the enhanced sympathetic outflow seen in CHF as a result of decreased NO availability. Thus, we hypothesized that central ROCKII blockade would improve the sympathovagal imbalance in a pacing rabbit model of CHF in an NO-dependent manner. CHF was induced by rapid ventricular pacing and characterized by an ejection fraction of ≤45%. Animals were implanted with an intracerbroventricular cannula and osmotic minipump (rate, 1 µL/h) containing sterile saline, 1.5 µg/kg per day fasudil (Fas, a ROCKII inhibitor) for 4 days or Fas+100 µg/kg per day Nω-Nitro-l-arginine methyl ester hydrochloride, a NO synthase inhibitor. Arterial baroreflex control was assessed by intravenous infusion of sodium nitroprusside and phenylephrine. Fas infusion significantly lowered resting heart rate by decreasing sympathetic and increasing vagal tone. Furthermore, Fas improved baroreflex gain in CHF in an NO-dependent manner. In CHF Fas animals, the decrease in heart rate in response to intravenous metoprolol was similar to Sham and was reversed by Nω-Nitro-l-arginine methyl ester hydrochloride. Fas decreased angiotensin II type 1 receptor and phospho-ERM protein expression and increased endothelial NO synthase expression in the brain stem of CHF animals. These data strongly suggest that central ROCKII activation contributes to cardiac sympathoexcitation in the setting of CHF and that central Fas restores vagal and sympathetic tone in an NO-dependent manner. ROCKII may be a new central therapeutic target in the setting of CHF.


Asunto(s)
Barorreflejo/fisiología , Insuficiencia Cardíaca/fisiopatología , Receptor de Angiotensina Tipo 1/fisiología , Quinasas Asociadas a rho/fisiología , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/administración & dosificación , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/análogos & derivados , Animales , Barorreflejo/efectos de los fármacos , Tronco Encefálico/efectos de los fármacos , Enfermedad Crónica , Estado de Conciencia/efectos de los fármacos , Estado de Conciencia/fisiología , Inhibidores Enzimáticos/administración & dosificación , Corazón/efectos de los fármacos , Corazón/inervación , Insuficiencia Cardíaca/tratamiento farmacológico , Frecuencia Cardíaca/efectos de los fármacos , Masculino , Metoprolol/administración & dosificación , NG-Nitroarginina Metil Éster/administración & dosificación , Óxido Nítrico Sintasa/biosíntesis , Nitroprusiato/administración & dosificación , Fenilefrina/administración & dosificación , Conejos , Receptor de Angiotensina Tipo 1/biosíntesis , Sistema Nervioso Simpático/efectos de los fármacos , Sistema Nervioso Simpático/fisiopatología , Nervio Vago/efectos de los fármacos , Quinasas Asociadas a rho/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...