Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Biol Sci ; 291(2021): 20240220, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38654642

RESUMEN

Climate warming and landscape fragmentation are both factors well known to threaten biodiversity and to generate species responses and adaptation. However, the impact of warming and fragmentation interplay on organismal responses remains largely under-explored, especially when it comes to gut symbionts, which may play a key role in essential host functions and traits by extending its functional and genetic repertoire. Here, we experimentally examined the combined effects of climate warming and habitat connectivity on the gut bacterial communities of the common lizard (Zootoca vivipara) over three years. While the strength of effects varied over the years, we found that a 2°C warmer climate decreases lizard gut microbiome diversity in isolated habitats. However, enabling connectivity among habitats with warmer and cooler climates offset or even reversed warming effects. The warming effects and the association between host dispersal behaviour and microbiome diversity appear to be a potential driver of this interplay. This study suggests that preserving habitat connectivity will play a key role in mitigating climate change impacts, including the diversity of the gut microbiome, and calls for more studies combining multiple anthropogenic stressors when predicting the persistence of species and communities through global changes.


Asunto(s)
Cambio Climático , Ecosistema , Microbioma Gastrointestinal , Lagartos , Animales , Lagartos/fisiología , Lagartos/microbiología , Biodiversidad
2.
Mol Ecol ; 32(12): 3060-3075, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36872057

RESUMEN

Although animal dispersal is known to play key roles in ecological and evolutionary processes such as colonization, population extinction and local adaptation, little is known about its genetic basis, particularly in vertebrates. Untapping the genetic basis of dispersal should deepen our understanding of how dispersal behaviour evolves, the molecular mechanisms that regulate it and link it to other phenotypic aspects in order to form the so-called dispersal syndromes. Here, we comprehensively combined quantitative genetics, genome-wide sequencing and transcriptome sequencing to investigate the genetic basis of natal dispersal in a known ecological and evolutionary model of vertebrate dispersal: the common lizard, Zootoca vivipara. Our study supports the heritability of dispersal in semi-natural populations, with less variation attributable to maternal and natal environment effects. In addition, we found an association between natal dispersal and both variation in the carbonic anhydrase (CA10) gene, and in the expression of several genes (TGFB2, SLC6A4, NOS1) involved in central nervous system functioning. These findings suggest that neurotransmitters (serotonin and nitric oxide) are involved in the regulation of dispersal and shaping dispersal syndromes. Several genes from the circadian clock (CRY2, KCTD21) were also differentially expressed between disperser and resident lizards, supporting that the circadian rhythm, known to be involved in long-distance migration in other taxa, might affect dispersal as well. Since neuronal and circadian pathways are relatively well conserved across vertebrates, our results are likely to be generalisable, and we therefore encourage future studies to further investigate the role of these pathways in shaping dispersal in vertebrates.


Asunto(s)
Evolución Biológica , Vertebrados , Animales , RNA-Seq , Síndrome , Distribución Animal
3.
Int J Mol Sci ; 23(21)2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36361648

RESUMEN

Bisphenol A (BPA) and bisphenol S (BPS) are synthetic chemicals used to produce plastics which can be released in food and water. Once ingested, BPA and BPS are metabolized by the liver, mainly as glucuronidated metabolites, and are excreted through urine. Since urine can be stored for many hours, the bladder is chronically exposed to BP metabolites, and studies have shown that these metabolites can remain active in the organism. Therefore, the effect of physiological concentrations of glucuronidated BPs was evaluated on the bioenergetics (glycolysis and mitochondrial respiration), migration and proliferation of normal urothelial cells, and non-invasive and invasive bladder cancer cells. The results demonstrated that an exposure of 72 h to glucuronidated BPA or BPS decreased the bioenergetics and activity of normal urothelial cells, while increasing these parameters for bladder cancer cells. These findings suggest that BP metabolites are not as inactive as initially believed, and their ubiquitous presence in the urine could promote bladder cancer progression.


Asunto(s)
Neoplasias de la Vejiga Urinaria , Humanos , Vejiga Urinaria , Compuestos de Bencidrilo/orina , Fenoles/orina
4.
Ecol Lett ; 25(12): 2675-2687, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36223413

RESUMEN

Dispersal is a central biological process tightly integrated into life-histories, morphology, physiology and behaviour. Such associations, or syndromes, are anticipated to impact the eco-evolutionary dynamics of spatially structured populations, and cascade into ecosystem processes. As for dispersal on its own, these syndromes are likely neither fixed nor random, but conditional on the experienced environment. We experimentally studied how dispersal propensity varies with individuals' phenotype and local environmental harshness using 15 species ranging from protists to vertebrates. We reveal a general phenotypic dispersal syndrome across studied species, with dispersers being larger, more active and having a marked locomotion-oriented morphology and a strengthening of the link between dispersal and some phenotypic traits with environmental harshness. Our proof-of-concept metacommunity model further reveals cascading effects of context-dependent syndromes on the local and regional organisation of functional diversity. Our study opens new avenues to advance our understanding of the functioning of spatially structured populations, communities and ecosystems.


Asunto(s)
Evolución Biológica , Ecosistema , Animales , Síndrome , Fenotipo
5.
J Anim Ecol ; 91(11): 2301-2313, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36131637

RESUMEN

Contemporary climate change affects population dynamics, but its influence varies with landscape structure. It is still unclear whether landscape fragmentation buffers or amplifies the effects of climate on population size and the age and body size of individuals composing these populations. This study aims to investigate the impacts of warm climates on lizard life-history traits and population dynamics in habitats that vary in their connectivity. We monitored common lizard Zootoca vivipara populations for 3 years in an experimental system in which both climatic conditions and connectivity among habitats were simultaneously manipulated. We considered two climatic treatments (i.e. present-day climate and warm climate [+1.4°C than present-day climate]) and two connectivity treatments (i.e. a connected treatment in which individuals could move from one climate to the other and an isolated treatment in which movement between climates was not possible). We monitored survival, reproduction, growth, dispersal, age and body size of each individual in the system as well as population density through time. We found that the influence of warm climates on life-history traits and population dynamics depended on connectivity among thermal habitats. Populations in warm climates were (i) composed of younger individuals only when isolated; (ii) larger in population size only in connected habitats and (iii) composed of larger age-specific individuals independently of the landscape configuration. The connectivity among habitats altered population responses to climate warming likely through asymmetries in the flow and phenotype of dispersers between thermal habitats. Our results demonstrate that landscape fragmentation can drastically change the dynamics and persistence of populations facing climate change.


Le changement climatique actuel impacte la dynamique des populations, mais son influence varie avec la structure du paysage. A ce jour, il est difficile de prédire si la fragmentation du paysage réduit ou augmente les effets du réchauffement climatique sur la taille des populations, ainsi que sur l'âge et la taille corporelle des individus qui composent ces populations. Cette étude s'intéresse aux impacts d'un climat plus chaud sur les traits d'histoire de vie et la dynamique de populations vivant dans des habitats qui diffèrent quant à leur niveau de connectivité. Pendant trois ans, nous avons suivi des populations de lézards vivipares Zootoca vivipara au sein d'un dispositif expérimental qui permet de manipuler simultanément les conditions climatiques et le niveau de connectivité entre habitats. Nous avons considéré deux traitements climatiques [i.e., climat actuel et climat chaud (+1.4°C plus chaud que le climat actuel)] et deux traitements de connectivité (i.e., un traitement connecté au sein duquel les individus pouvaient se déplacer d'un climat à un autre, et un traitement isolé au sein duquel les déplacements entre climats n'étaient pas permis). Tout au long de l'expérience, nous avons mesuré la survie, la reproduction, la croissance, la dispersion, l'âge et la taille corporelle de chaque individu ainsi que la densité des populations. Nous avons observé que l'influence du climat chaud sur les traits d'histoire de vie et la dynamique de population dépendait du niveau de connectivité entre habitats. Les populations en climat chaud étaient composées (i) d'individus plus jeunes seulement en habitat isolé, (ii) de plus d'individus uniquement en habitat connecté et (iii) d'individus plus grands à âge égal et ce indépendamment de la configuration du paysage. Nos résultats montrent que le niveau de connectivité entre habitats altère les réponses des populations au réchauffement climatique via une asymétrie dans le flux et le phénotype des dispersants entre climats. Nos résultats démontrent que la fragmentation du paysage peut influencer de façon drastique la dynamique et la persistance des populations face au changement climatique.


Asunto(s)
Rasgos de la Historia de Vida , Lagartos , Animales , Ecosistema , Dinámica Poblacional , Cambio Climático , Lagartos/fisiología
6.
Cancers (Basel) ; 14(16)2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-36011004

RESUMEN

Bisphenol A (BPA) and bisphenol S (BPS) are used in the production of plastics. These endocrine disruptors can be released into the environment and food, resulting in the continuous exposure of humans to bisphenols (BPs). The bladder urothelium is chronically exposed to BPA and BPS due to their presence in human urine samples. BPA and BPS exposure has been linked to cancer progression, especially for hormone-dependent cancers. However, the bladder is not recognized as a hormone-dependent tissue. Still, the presence of hormone receptors on the urothelium and their role in bladder cancer initiation and progression suggest that BPs could impact bladder cancer development. The effects of chronic exposure to BPA and BPS for 72 h on the bioenergetics (glycolysis and mitochondrial respiration), proliferation and migration of normal urothelial cells and non-invasive and invasive bladder cancer cells were evaluated. The results demonstrate that chronic exposure to BPs decreased urothelial cells' energy metabolism and properties while increasing them for bladder cancer cells. These findings suggest that exposure to BPA and BPS could promote bladder cancer development with a potential clinical impact on bladder cancer progression. Further studies using 3D models would help to understand the clinical consequences of this exposure.

7.
Microbiol Spectr ; 10(5): e0243221, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-35972287

RESUMEN

Uropathogenic Escherichia coli (UPEC) ecology-pathophysiology from the gut reservoir to its urothelium infection site is poorly understood, resulting in equivocal benefits in the use of cranberry as prophylaxis against urinary tract infections. To add further understanding from the previous findings on PAC antiadhesive properties against UPEC, we assessed in this study the effects of proanthocyanidins (PAC) rich cranberry extract microbial metabolites on UTI89 virulence and fitness in contrasting ecological UPEC's environments. For this purpose, we developed an original model combining a colonic fermentation system (SHIME) with a dialysis cassette device enclosing UPEC and a 3D tissue-engineered urothelium. Two healthy fecal donors inoculated the colons. Dialysis cassettes containing 7log10 CFU/mL UTI89 were immersed for 2h in the SHIME colons to assess the effect of untreated (7-day control diet)/treated (14-day PAC-rich extract) metabolomes on UPEC behavior. Engineered urothelium were then infected with dialysates containing UPEC for 6 h. This work demonstrated for the first time that in the control fecal microbiota condition without added PAC, the UPEC virulence genes were activated upstream the infection site, in the gut. However, PAC microbial-derived cranberry metabolites displayed a remarkable propensity to blunt activation of genes encoding toxin, adhesin/invasins in the gut and on the urothelium, in a donor-dependent manner. Variability in subjects' gut microbiota and ensuing contrasting cranberry PAC metabolism affects UPEC virulence and should be taken into consideration when designing cranberry efficacy clinical trials. IMPORTANCE Uropathogenic Escherichia coli (UPEC) are the primary cause of recurrent urinary tract infections (UTI). The poor understanding of UPEC ecology-pathophysiology from its reservoir-the gut, to its infection site-the urothelium, partly explains the inadequate and abusive use of antibiotics to treat UTI, which leads to a dramatic upsurge in antibiotic-resistance cases. In this context, we evaluated the effect of a cranberry proanthocyanidins (PAC)-rich extract on the UPEC survival and virulence in a bipartite model of a gut microbial environment and a 3D urothelium model. We demonstrated that PAC-rich cranberry extract microbial metabolites significantly blunt activation of UPEC virulence genes at an early stage in the gut reservoir. We also showed that altered virulence in the gut affects infectivity on the urothelium in a microbiota-dependent manner. Among the possible mechanisms, we surmise that specific microbial PAC metabolites may attenuate UPEC virulence, thereby explaining the preventative, yet contentious properties of cranberry against UTI.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Proantocianidinas , Infecciones Urinarias , Escherichia coli Uropatógena , Vaccinium macrocarpon , Humanos , Antibacterianos/farmacología , Infecciones por Escherichia coli/prevención & control , Infecciones por Escherichia coli/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Proantocianidinas/farmacología , Proantocianidinas/uso terapéutico , Infecciones Urinarias/prevención & control , Infecciones Urinarias/tratamiento farmacológico , Urotelio , Virulencia
8.
Bioengineering (Basel) ; 8(11)2021 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-34821750

RESUMEN

Heat inactivation of bovine sera is routinely performed in cell culture laboratories. Nevertheless, it remains debatable whether it is still necessary due to the improvement of the production process of bovine sera. Do the benefits balance the loss of many proteins, such as hormones and growth factors, that are very useful for cell culture? This is even truer in the case of tissue engineering, the processes of which is often very demanding. This balance is examined here, from nine populations of fibroblasts originating from three different organs, by comparing the capacity of adhesion and proliferation of cells, their metabolism, and the capacity to produce the stroma; their histological appearance, thickness, and mechanical properties were also evaluated. Overall, serum inactivation does not appear to provide a significant benefit.

9.
Nat Ecol Evol ; 2(12): 1859-1863, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30397298

RESUMEN

Ecology and evolution unfold in spatially structured communities, where dispersal links dynamics across scales. Because dispersal is multicausal, identifying general drivers remains challenging. In a coordinated distributed experiment spanning organisms from protozoa to vertebrates, we tested whether two fundamental determinants of local dynamics, top-down and bottom-up control, generally explain active dispersal. We show that both factors consistently increased emigration rates and use metacommunity modelling to highlight consequences on local and regional dynamics.


Asunto(s)
Migración Animal , Ecosistema , Invertebrados/fisiología , Vertebrados/fisiología , Animales , Criptófitas/fisiología , Hymenostomatida/fisiología , Modelos Biológicos , Dinámica Poblacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...