Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Nanotechnol ; 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38242986

RESUMEN

Positron emission particle tracking (PEPT) enables 3D localization and tracking of single positron-emitting radiolabelled particles with high spatiotemporal resolution. The translation of PEPT to the biomedical imaging field has been limited due to the lack of methods to radiolabel biocompatible particles with sufficient specific activity and protocols to isolate a single particle in the sub-micrometre size range, below the threshold for capillary embolization. Here we report two key developments: the synthesis and 68Ga-radiolabelling of homogeneous silica particles of 950 nm diameter with unprecedented specific activities (2.1 ± 1.4 kBq per particle), and the isolation and manipulation of a single particle. We have combined these developments to perform in vivo PEPT and dynamic positron emission tomography (PET) imaging of a single radiolabelled sub-micrometre size particle using a pre-clinical positron emission tomography/computed tomography scanner. This work opens possibilities for quantitative assessment of haemodynamics in vivo in real time, at the whole-body level using minimal amounts of injected radioactive dose and material.

2.
Biomater Adv ; 134: 112551, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35513950

RESUMEN

The coating composition of nanomedicines is one of the main features in determining the medicines' fate, clearance, and immunoresponse in the body. To highlight the coatings' impact in pulmonary administration, two micellar superparamagnetic iron oxide nanoparticles (SPION) were compared. These nanoparticles are similar in size and charge but have different coatings: either phosphatidylcholine (PC-SPION) or bovine serum albumin (BSA-SPION). The aim of the study was to increase the understanding of the nano-bio interaction with the cellular and non-cellular components of the lung and underline valuable coatings either for local lung-targeted drug delivery in theranostic application or patient-friendly route systemic administration. PC-SPION and BSA-SPION were deposited in the alveoli by in vivo instillation and, despite the complexity of imaging the lung, SPION were macroscopically visualized by MRI. Impressively, PC-SPION were retained within the lungs for at least a week, while BSA-SPION were cleared more rapidly. The different lung residence times were confirmed by histological analysis and supported by a flow cytometry analysis of the SPION interactions with different myeloid cell populations. To further comprehend the way in which these nanoformulations interact with lung components at the molecular level, we used fluorescence spectroscopy, turbidity measurements, and dynamic light scattering to evaluate the interactions of the two SPION with surfactant protein A (SP-A), a key protein in setting up the nanoparticle behavior in the alveolar fluid. We found that SP-A induced aggregation of PC-SPION, but not BSA-SPION, which likely caused PC-SPION retention in the lung without inducing inflammation. In conclusion, the two SPION show different outcomes from interaction with SP-A leading to distinctive fate in the lung. PC-SPION hold great promise as imaging and theranostic agents when prolonged pulmonary drug delivery is required.


Asunto(s)
Nanopartículas , Proteína A Asociada a Surfactante Pulmonar , Humanos , Pulmón/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Nanopartículas/química , Albúmina Sérica Bovina
3.
Circulation ; 145(14): 1084-1101, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35236094

RESUMEN

BACKGROUND: In most eukaryotic cells, the mitochondrial DNA (mtDNA) is transmitted uniparentally and present in multiple copies derived from the clonal expansion of maternally inherited mtDNA. All copies are therefore near-identical, or homoplasmic. The presence of >1 mtDNA variant in the same cytoplasm can arise naturally or result from new medical technologies aimed at preventing mitochondrial genetic diseases and improving fertility. The latter is called divergent nonpathologic mtDNA heteroplasmy (DNPH). We hypothesized that DNPH is maladaptive and usually prevented by the cell. METHODS: We engineered and characterized DNPH mice throughout their lifespan using transcriptomic, metabolomic, biochemical, physiologic, and phenotyping techniques. We focused on in vivo imaging techniques for noninvasive assessment of cardiac and pulmonary energy metabolism. RESULTS: We show that DNPH impairs mitochondrial function, with profound consequences in critical tissues that cannot resolve heteroplasmy, particularly cardiac and skeletal muscle. Progressive metabolic stress in these tissues leads to severe pathology in adulthood, including pulmonary hypertension and heart failure, skeletal muscle wasting, frailty, and premature death. Symptom severity is strongly modulated by the nuclear context. CONCLUSIONS: Medical interventions that may generate DNPH should address potential incompatibilities between donor and recipient mtDNA.


Asunto(s)
Fragilidad , Cardiopatías , Hipertensión Pulmonar , Adulto , Animales , ADN Mitocondrial/genética , Fragilidad/patología , Cardiopatías/patología , Heteroplasmia , Humanos , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/patología , Ratones , Mitocondrias/genética
4.
J Mater Chem B ; 10(2): 302-305, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34914815

RESUMEN

Contrast agents retaining high relaxivities at ultrahigh magnetic fields underpin an enhanced image sensitivity within derived MRI scans. By varying the Dy3+ loading density inside a mesoporous silica architecture the dominant Curie effect can be effectively tuned so as to optimise T2 contrast at magnetic fields as high as 11.7 T.


Asunto(s)
Medios de Contraste/química , Radiofármacos/química , Dióxido de Silicio/química , Disprosio/química , Campos Magnéticos , Porosidad , Temperatura
5.
Int J Nanomedicine ; 16: 5923-5935, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34475757

RESUMEN

BACKGROUND AND PURPOSE: Non-invasive imaging methodologies, especially nuclear imaging techniques, have undergone an extraordinary development over the last years. Interest in the development of innovative tracers has prompted the emergence of new nanomaterials with a focus on nuclear imaging and therapeutical applications. Among others, organic nanoparticles are of the highest interest due to their translational potential related to their biocompatibility and biodegradability. Our group has developed a promising new type of biocompatible nanomaterials, sphingomyelin nanoemulsions (SNs). The aim of this study is to explore the potential of SNs for nuclear imaging applications. METHODS: Ready-to-label SNs were prepared by a one-step method using lipid derivative chelators and characterized in terms of their physicochemical properties. Stability was assessed under storage and after incubation with human serum. Chelator-functionalized SNs were radiolabeled with 67Ga and 68Ga, and the radiochemical yield (RCY), radiochemical purity (RCP) and radiochemical stability (RCS) were determined. Finally, the biodistribution of 67/68Ga-SNs was evaluated in vivo and ex vivo. RESULTS: Here, we describe a simple and mild one-step method for fast and efficient radiolabeling of SNs with 68Ga and 67Ga radioisotopes. In vivo experiments showed that 67/68Ga-SNs can efficiently and indistinctly be followed up by PET and SPECT. Additionally, we proved that the biodistribution of the 67/68Ga-SNs can be conveniently modulated by modifying the surface properties of different hydrophilic polymers, and therefore the formulation can be further adapted to the specific requirements of different biomedical applications. CONCLUSION: This work supports 67/68Ga-SNs as a novel probe for nuclear imaging with tunable biodistribution and with great potential for the future development of nanotheranostics.


Asunto(s)
Tomografía de Emisión de Positrones , Esfingolípidos , Radioisótopos de Galio , Humanos , Radiofármacos , Distribución Tisular , Tomografía Computarizada de Emisión de Fotón Único
6.
ACS Appl Mater Interfaces ; 13(38): 45279-45290, 2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34529427

RESUMEN

Vascular microcalcifications are associated with atherosclerosis plaque instability and, therefore, to increased mortality. Because of this key role, several imaging probes have been developed for their in vivo identification. Among them, [18F]FNa is the gold standard, showing a large uptake in the whole skeleton by positron emission tomography. Here, we push the field toward the combined anatomical and functional early characterization of atherosclerosis. For this, we have developed hydroxyapatite (HAP)-multitag, a bisphosphonate-functionalized 68Ga core-doped magnetic nanoparticle showing high affinity toward most common calcium salts present in microcalcifications, particularly HAP. We characterized this interaction in vitro and in vivo, showing a massive uptake in the atherosclerotic lesion identified by positron emission tomography (PET) and positive contrast magnetic resonance imaging (MRI). In addition, this accumulation was found to be dependent on the calcification progression, with a maximum uptake in the microcalcification stage. These results confirmed the ability of HAP-multitag to identify vascular calcifications by PET/(T1)MRI during the vulnerable stages of the plaque progression.


Asunto(s)
Aterosclerosis/diagnóstico , Medios de Contraste/química , Durapatita/química , Nanopartículas Magnéticas de Óxido de Hierro/química , Calcificación Vascular/diagnóstico por imagen , Alendronato/química , Animales , Aorta/patología , Aterosclerosis/complicaciones , Aterosclerosis/patología , Radioisótopos de Galio/química , Imagen por Resonancia Magnética , Ratones , Imagen Multimodal , Placa Aterosclerótica/diagnóstico , Placa Aterosclerótica/etiología , Placa Aterosclerótica/patología , Tomografía de Emisión de Positrones , Calcificación Vascular/etiología , Calcificación Vascular/patología
7.
Chem Soc Rev ; 50(5): 3355-3423, 2021 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-33491714

RESUMEN

Nanomaterials offer unique physical, chemical and biological properties of interest for medical imaging and therapy. Over the last two decades, there has been an increasing effort to translate nanomaterial-based medicinal products (so-called nanomedicines) into clinical practice and, although multiple nanoparticle-based formulations are clinically available, there is still a disparity between the number of pre-clinical products and those that reach clinical approval. To facilitate the efficient clinical translation of nanomedicinal-drugs, it is important to study their whole-body biodistribution and pharmacokinetics from the early stages of their development. Integrating this knowledge with that of their therapeutic profile and/or toxicity should provide a powerful combination to efficiently inform nanomedicine trials and allow early selection of the most promising candidates. In this context, radiolabelling nanomaterials allows whole-body and non-invasive in vivo tracking by the sensitive clinical imaging techniques positron emission tomography (PET), and single photon emission computed tomography (SPECT). Furthermore, certain radionuclides with specific nuclear emissions can elicit therapeutic effects by themselves, leading to radionuclide-based therapy. To ensure robust information during the development of nanomaterials for PET/SPECT imaging and/or radionuclide therapy, selection of the most appropriate radiolabelling method and knowledge of its limitations are critical. Different radiolabelling strategies are available depending on the type of material, the radionuclide and/or the final application. In this review we describe the different radiolabelling strategies currently available, with a critical vision over their advantages and disadvantages. The final aim is to review the most relevant and up-to-date knowledge available in this field, and support the efficient clinical translation of future nanomedicinal products for in vivo imaging and/or therapy.


Asunto(s)
Diagnóstico por Imagen/métodos , Nanoestructuras/química , Radiofármacos/química , Animales , Humanos , Nanomedicina , Tomografía de Emisión de Positrones , Radiofármacos/metabolismo , Distribución Tisular , Tomografía Computarizada de Emisión de Fotón Único
8.
Nanoscale ; 12(45): 22978-22987, 2020 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-33053000

RESUMEN

Radioisotope-labelled nanoparticles permit novel applications in molecular imaging, while recent developments in imaging have enabled direct visualization of biological processes. While this holds true for pathological processes that are stable in time, such as cancer, imaging approaches are limited for phenomena that take place in the range of minutes, such as thrombotic events. Here, we take advantage of bioorthogonal chemistry to demonstrate the concept of nanoparticle-based fast pre-targeted imaging. Using a newly designed nanoparticle that targets platelets we show the applicability of this approach developing thrombo-tag, an in vivo produced nanoparticle that labels thrombi. We show that thrombo-tag allows specific labelling of platelets that accumulate in the injured pulmonary vasculature, or that aggregate in brains of mice suffering thrombotic processes. The fast kinetics and high specificity features of thrombo-tag may critically expand the application of molecular imaging to the most prevalent and debilitating diseases in the clinics.


Asunto(s)
Nanopartículas , Trombosis , Animales , Plaquetas , Ratones , Imagen Molecular , Trombosis/diagnóstico por imagen
9.
J Nucl Cardiol ; 27(4): 1249-1260, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-30927149

RESUMEN

BACKGROUND: Here we evaluated the feasibility of PET with Gallium-68 (68Ga)-labeled DOTA for non-invasive assessment of myocardial blood flow (MBF) and extracellular volume fraction (ECV) in a pig model of myocardial infarction. We also aimed to validate MBF measurements using microspheres as a gold standard in healthy pigs. METHODS: 8 healthy pigs underwent three sequential 68Ga-DOTA-PET/CT scans at rest and during pharmacological stress with simultaneous injection of fluorescent microspheres to validate MBF measurements. Myocardial infarction was induced in 5 additional pigs, which underwent 68Ga-DOTA-PET/CT examinations 7-days after reperfusion. Dynamic PET images were reconstructed and fitted to obtain MBF and ECV parametric maps. RESULTS: MBF assessed with 68Ga-DOTA-PET showed good correlation (y = 0.96x + 0.11, r = 0.91) with that measured with microspheres. MBF values obtained with 68Ga-DOTA-PET in the infarcted area (LAD, left anterior descendant) were significantly reduced in comparison to remote ones LCX (left circumflex artery, P < 0.0001) and RCA (right coronary artery, P < 0.0001). ECV increased in the infarcted area (P < 0.0001). CONCLUSION: 68Ga-DOTA-PET allowed non-invasive assessment of MBF and ECV in pigs with myocardial infarction and under rest-stress conditions. This technique could provide wide access to quantitative measurement of both MBF and ECV with PET imaging.


Asunto(s)
Circulación Coronaria/fisiología , Radioisótopos de Galio , Compuestos Heterocíclicos con 1 Anillo , Infarto del Miocardio/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Radiofármacos , Animales , Autorradiografía , Estudios de Factibilidad , Femenino , Masculino , Porcinos
10.
Materials (Basel) ; 12(24)2019 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-31817929

RESUMEN

: The use of nanoparticulate systems as contrast agents for magnetic resonance imaging (MRI) is well-established and known to facilitate an enhanced image sensitivity within scans of a particular pathological region of interest. Such a capability can enable both a non-invasive diagnosis and the monitoring of disease progression/response to treatment. In this review, magnetic nanoparticles that exhibit a bio-responsive MR relaxivity are discussed, with pH-, enzyme-, biomolecular-, and protein-responsive systems considered. The ability of a contrast agent to respond to a biological stimulus provides not only enriched diagnostic capabilities over corresponding non-responsive analogues, but also an improved longitudinal monitoring of specific physiological conditions.

11.
Cell Metab ; 30(6): 1120-1130.e5, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31588014

RESUMEN

mtDNA is present in multiple copies in each cell derived from the expansions of those in the oocyte. Heteroplasmy, more than one mtDNA variant, may be generated by mutagenesis, paternal mtDNA leakage, and novel medical technologies aiming to prevent inheritance of mtDNA-linked diseases. Heteroplasmy phenotypic impact remains poorly understood. Mouse studies led to contradictory models of random drift or haplotype selection for mother-to-offspring transmission of mtDNA heteroplasmy. Here, we show that mtDNA heteroplasmy affects embryo metabolism, cell fitness, and induced pluripotent stem cell (iPSC) generation. Thus, genetic and pharmacological interventions affecting oxidative phosphorylation (OXPHOS) modify competition among mtDNA haplotypes during oocyte development and/or at early embryonic stages. We show that heteroplasmy behavior can fall on a spectrum from random drift to strong selection, depending on mito-nuclear interactions and metabolic factors. Understanding heteroplasmy dynamics and its mechanisms provide novel knowledge of a fundamental biological process and enhance our ability to mitigate risks in clinical applications affecting mtDNA transmission.


Asunto(s)
ADN Mitocondrial/genética , Desarrollo Embrionario/genética , Herencia Materna/genética , Mitocondrias/genética , Oogénesis/genética , Animales , Línea Celular , Embrión de Mamíferos , Femenino , Fibroblastos , Haplotipos , Masculino , Ratones , Ratones Endogámicos C57BL , Oocitos
12.
ACS Omega ; 4(2): 2719-2727, 2019 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-31459508

RESUMEN

Synthesizing iron oxide nanoparticles for positive contrast in magnetic resonance imaging is the most promising approach to bring this nanomaterial back to the clinical field. The success of this approach depends on several aspects: the longitudinal relaxivity values, the complexity of the synthetic protocol, and the reproducibility of the synthesis. Here, we show our latest results on this goal. We have studied the effect of Cu doping on the physicochemical, magnetic, and relaxometric properties of iron oxide nanoparticles designed to provide positive contrast in magnetic resonance imaging. We have used a one-step, 10 min synthesis to produce nanoparticles with excellent colloidal stability. We have synthesized three different Cu-doped iron oxide nanoparticles showing modest to very large longitudinal relaxivity values. Finally, we have demonstrated the in vivo use of these kinds of nanoparticles both in angiography and targeted molecular imaging.

13.
Chem Commun (Camb) ; 55(59): 8540-8543, 2019 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-31282517

RESUMEN

Bioresponsive contrast agents can provide smart signaling in MRI. In wrapping pore functionalised Gd-DOTA mesoporous silica nanoparticles with pH-responsive poly(acrylic acid), exchange between pore and bulk water can be reversibly switched by local pH. The generated high contrast then exhibits a large amplitude switch in a manner relevant to environmentally responsive imaging.

14.
Contrast Media Mol Imaging ; 2019: 1845637, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31191182

RESUMEN

Magnetic resonance imaging (MRI) is a noninvasive medical imaging modality that is routinely used in clinics, providing anatomical information with micron resolution, soft tissue contrast, and deep penetration. Exogenous contrast agents increase image contrast by shortening longitudinal (T 1) and transversal (T 2) relaxation times. Most of the T 1 agents used in clinical MRI are based on paramagnetic lanthanide complexes (largely Gd-based). In moving to translatable formats of reduced toxicity, greater chemical stability, longer circulation times, higher contrast, more controlled functionalisation and additional imaging modalities, considerable effort has been applied to the development of nanoparticles bearing paramagnetic ions. This review summarises the most relevant examples in the synthesis and biomedical applications of paramagnetic nanoparticles as contrast agents for MRI and multimodal imaging. It includes the most recent developments in the field of production of agents with high relaxivities, which are key for effective contrast enhancement, exemplified through clinically relevant examples.


Asunto(s)
Medios de Contraste/química , Imagen por Resonancia Magnética/métodos , Nanopartículas/química , Animales , Medios de Contraste/normas , Gadolinio , Humanos , Elementos de la Serie de los Lantanoides , Imagen por Resonancia Magnética/tendencias , Nanopartículas/normas
15.
Nanomedicine ; 17: 26-35, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30654185

RESUMEN

The importance of atherosclerosis is driving research to create improved diagnostic tools based on molecular imaging. Pretargeted imaging is the use of bioorthogonal probes that selectively accumulate upon reaction with a pre-modified biomolecule in vivo. To date, this very promising approach has not been applied to atherosclerosis. Neither has been the use of a single nano-radiomaterial for PET / T1-MR imaging of atherosclerosis. Here, we synthesized bioorthogonal nano-radiomaterials for in vivo pretargeted molecular imaging in a mouse model of atherosclerosis. Based on tetrazine-ligation, these functionalized 68Ga iron oxide nano-radiomaterials provide simultaneous PET and T1-MRI signals and selectively accumulate in atherosclerotic plaques in mice sequentially injected with trans-cyclooctene-modified antibodies against oxidized LDL followed by the hybrid nano-radiomaterial. Our results demonstrate the ability of this approach to unambiguously detect atherosclerosis. Furthermore, we show the first example of how hybrid imaging can be used for pretargeted bioorthogonal molecular imaging with nanomaterials.


Asunto(s)
Aterosclerosis/diagnóstico por imagen , Placa Aterosclerótica/diagnóstico por imagen , Animales , Compuestos Férricos/análisis , Radioisótopos de Galio/análisis , Imagen por Resonancia Magnética/métodos , Ratones Endogámicos C57BL , Modelos Moleculares , Imagen Molecular/métodos , Nanoestructuras/análisis , Tomografía de Emisión de Positrones/métodos
16.
J Vis Exp ; (141)2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30531725

RESUMEN

Here, we describe a microwave synthesis to obtain iron oxide nanoparticles core-doped with 68Ga. Microwave technology enables fast and reproducible synthetic procedures. In this case, starting from FeCl3 and citrate trisodium salt, iron oxide nanoparticles coated with citric acid are obtained in 10 min in the microwave. These nanoparticles present a small core size of 4.2 ± 1.1 nm and a hydrodynamic size of 7.5 ± 2.1 nm. Moreover, they have a high longitudinal relaxivity (r1) value of 11.9 mM-1·s-1 and a modest transversal relaxivity value (r2) of 22.9 mM-1·s-1, which results in a low r2/r1 ratio of 1.9. These values enable positive contrast generation in magnetic resonance imaging (MRI) instead of negative contrast, commonly used with iron oxide nanoparticles. In addition, if a 68GaCl3 elution from a 68Ge/68Ga generator is added to the starting materials, a nano-radiotracer doped with 68Ga is obtained. The product is obtained with a high radiolabeling yield (> 90%), regardless of the initial activity used. Furthermore, a single purification step renders the nano-radiomaterial ready to be used in vivo.


Asunto(s)
Compuestos Férricos/síntesis química , Radioisótopos de Galio/química , Imagen por Resonancia Magnética/métodos , Nanopartículas/química , Tomografía de Emisión de Positrones/métodos , Medios de Contraste/síntesis química
17.
Nanoscale ; 10(45): 21041-21045, 2018 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-30427363

RESUMEN

Integrating Dy-DOTA motifs into mesoporous silica nanoparticle scaffolds generates remarkable ultrahigh field T2 relaxivities for a well-defined and tailorable contrast agent, attributed to enhanced Curie outer-sphere contributions as supported by simulation.

18.
Nanomedicine ; 14(3): 643-650, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29317346

RESUMEN

ApoB-100 and Phosphatidylcholine-specific phospholipase C (PC-PLC) are important contributors to atherosclerosis development. ApoB-100 is the main structural protein of LDL, being directly associated with atherosclerosis plaque generation. PC-PLC is highly expressed in atherosclerosis lesions and contributes to their progression. We show how phosphatidylcholine-coated nanomicelles can be used for specific characterisation of atherosclerosis plaque. Results show that ApoB-100 in the protein corona of the nanomicelle targets the particles to atherosclerotic areas in apolipoprotein E-/- mice. Furthermore, PC-PLC selectively removes the polar heads from the phospholipid coating of the nanomicelles leading to their accumulation. To fully characterise the behaviour of the nanomicelles, we developed multimodal probes using a nanoemulsion step. Hybrid imaging revealed plaque accumulation of the nanomicelles and colocalisation with PC-PLC expression and ApoB-100 in the plaque. This study shows how protein corona composition and enzyme-driven nanomaterial accumulation can be used for detection of atherosclerosis.


Asunto(s)
Apolipoproteínas E/fisiología , Compuestos Férricos/química , Micelas , Nanocompuestos/química , Placa Aterosclerótica/metabolismo , Corona de Proteínas/metabolismo , Fosfolipasas de Tipo C/metabolismo , Animales , Apolipoproteína B-100/metabolismo , Ratones , Ratones Noqueados para ApoE , Nanocompuestos/administración & dosificación , Placa Aterosclerótica/patología , Corona de Proteínas/química , Fosfolipasas de Tipo C/química
19.
Sci Rep ; 7(1): 13242, 2017 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-29038592

RESUMEN

In vivo detection and quantification of inflammation is a major goal in molecular imaging. Furthermore, cell-specific detection of inflammation would be a tremendous advantage in the characterization of many diseases. Here, we show how this goal can be achieved through the synergistic combination of nanotechnology and nuclear imaging. One of the most remarkable features of this hybrid approach is the possibility to tailor the pharmacokinetics of the nanomaterial-incorporated biomolecule and radionuclide. A good example of this approach is the covalent binding of a large amount of a neutrophil-specific, hydrophobic peptide on the surface of 68Ga core-doped nanoparticles. This new nano-radiotracer has been used for non-invasive in vivo detection of acute inflammation with very high in vivo labelling efficiency, i.e. a large percentage of labelled neutrophils. Furthermore, we demonstrate that the tracer is neutrophil-specific and yields images of neutrophil recruitment of unprecedented quality. Finally, the nano-radiotracer was successfully detected in chronic inflammation in atherosclerosis-prone ApoE-/- mice after several weeks on a high-fat diet.


Asunto(s)
Radioisótopos de Galio/metabolismo , Neutrófilos/metabolismo , Neumonía/diagnóstico por imagen , Animales , Modelos Animales de Enfermedad , Radioisótopos de Galio/toxicidad , Células Madre Hematopoyéticas/metabolismo , Ratones , Ratones Endogámicos C57BL , Nanopartículas , Tomografía de Emisión de Positrones , Trazadores Radiactivos
20.
Langmuir ; 33(39): 10239-10247, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28882034

RESUMEN

Iron oxide nanomaterial is a typical example of a magnetic resonance imaging probe for negative contrast. It has also been shown how this nanomaterial can be synthesized for positive contrast by modification of the composition and size of the core. However, the role of the organic coating in the relaxometric properties is largely unexplored. Here, maghemite nanoparticles with either excellent positive or very good negative contrast performance are obtained by modifying coating thickness while the core is kept unchanged. Different nanoparticles with tailored features as contrast agent according to the coating layer thickness have been obtained in a single-step microwave-driven synthesis by heating at different temperatures. A comprehensive analysis is conducted of how the composition and structure of the coating affects the final magnetic, relaxometric, and imaging performance. These results show how the organic coating plays a fundamental role in the intrinsic relaxometric parameters of iron oxide-based contrast media.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...