Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38848287

RESUMEN

Objective: This proof-of-concept study was to investigate the relationship between photobiomodulation (PBM) and neuromuscular control. Background: The effects of concussion and repetitive head acceleration events (RHAEs) are associated with decreased motor control and balance. Simultaneous intranasal and transcranial PBM (itPBM) is emerging as a possible treatment for cognitive and psychological sequelae of brain injury with evidence of remote effects on other body systems. Methods: In total, 43 (39 male) participants, age 18-69 years (mean, 49.5; SD, 14.45), with a self-reported history of concussive and/or RHAE and complaints of their related effects (e.g., mood dysregulation, impaired cognition, and poor sleep quality), completed baseline and posttreatment motor assessments including clinical reaction time, grip strength, grooved pegboard, and the Mini Balance Evaluation Systems Test (MiniBEST). In the 8-week interim, participants self-administered itPBM treatments by wearing a headset comprising four near-infrared light-emitting diodes (LED) and a near-infrared LED nasal clip. Results: Posttreatment group averages in reaction time, MiniBEST reactive control subscores, and bilateral grip strength significantly improved with effect sizes of g = 0.75, g = 0.63, g = 0.22 (dominant hand), and g = 0.34 (nondominant hand), respectively. Conclusion: This study provides a framework for more robust studies and suggests that itPBM may serve as a noninvasive solution for improved neuromuscular health.

2.
Mil Med ; 189(3-4): e714-e720, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-37856171

RESUMEN

INTRODUCTION: Vestibular/Ocular Motor Screening (VOMS) is often part of a comprehensive evaluation to identify acute mild traumatic brain injury. Most of the reports describe the use of the VOMS in adolescents/young adults and not in older adults or military service members. The purpose of this study was to describe VOMS findings in healthy civilians and active duty military service members up to the age of 50 years. MATERIALS AND METHODS: Seventy-seven healthy civilians between 18 and 50 years of age (22 males, age 31.8 [9.0] years) participated across three sites in addition to 40 healthy active duty service members (25 males, age 27.5 [4.9] years) from one site. Demographics, Neurobehavioral Symptom Inventory scores, mean near point convergence (NPC) distance, and Total Symptom Change (TSS) scores from the VOMS were evaluated. RESULTS: For civilians, the group mean NPC distance was 4.98 (3.8) cm. For military service members, the group mean NPC distance was 6.17 (4.57) cm. For civilians, the mean TSS was 1.2 (2.3) with 53.2% reporting 0 TSS, 27.3% reporting one TSS, and 19.5% reporting two or more TSS. For military service members, the mean TSS was 0.20 (0.72) with 92.5% reporting 0 TSS, 0% reporting one TSS, and 7.5% reporting two or more TSS. Age did not correlate with the mean NPC distance and TSS in healthy civilians and active duty military service members. CONCLUSIONS: Reconsideration of the Military Acute Concussion Evaluation, Version 2 cutoff value for abnormal mean NPC distance may be warranted to improve diagnostic accuracy in both civilian and military adult populations. Similarly, re-evaluating criteria for interpreting the TSS results of the VOMS, specifically in civilians, may be warranted.


Asunto(s)
Traumatismos en Atletas , Conmoción Encefálica , Personal Militar , Masculino , Adolescente , Adulto Joven , Humanos , Anciano , Persona de Mediana Edad , Niño , Adulto , Conmoción Encefálica/diagnóstico , Traumatismos en Atletas/diagnóstico
3.
J Athl Train ; 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38014789

RESUMEN

CONTEXT: Wearable sensors are increasingly popular in concussion research because of their objective quantification of subtle balance deficits. However, normative data and minimum detectable change values are necessary to serve as a references for diagnostic use and tracking longitudinal recovery. OBJECTIVE: Identify normative values and minimal detectable change values for instrumented static and reactive balance tests, an instrumented static Mediolateral Root Mean Square (ML RMS) sway standing balance assessment, and the instrumented, modified Push & Release (I-mP&R), respectively. DESIGN: Cross-Sectional Study. SETTING: Clinical Setting. PATIENTS OR OTHER PARTICIPANTS: Normative static ML RMS sway and I-mP&R data were collected on 377 (n=184 females) healthy National Collegiate Athletic Association Division I athletes at the beginning of their competitive seasons. Test-retest data were collected in 36 healthy control athletes based on standard recovery timelines after concussion. RESULTS: Descriptive statistics, intraclass correlation coefficients (ICC), and minimal detectable change (MDC) values were calculated for primary outcomes of mediolateral (ML) root-mean-square (RMS) sway in a static double limb-stance standing on firm ground and a foam block, and time to stability and latency from the I-mP&R in single- and dual-task conditions. RESULTS: Normative outcomes across static ML RMS sway and I-mP&R were sensitive to sex and type of footwear. ML RMS sway demonstrated moderate reliability in the firm condition (ICC=0.73; MDC=2.7cm/s2), but poor reliability in the foam condition (ICC=0.43; MDC=11.1cm/s2). Single- and dual-task time to stability from the I-mP&R exhibited good reliability (ICC=0.84 and 0.80, respectfully; MDC=0.25s, 0.59s, respectfully). Latency from the I-mP&R had poor to moderate reliability (ICC=0.38, 0.55; MDC=107ms, 105ms). CONCLUSIONS: Sex-matched references should be used for instrumented static and reactive balance assessments. Footwear may explain variability in static ML RMS sway and time to stability of the I-mP&R. Moderate-to-good reliability suggest time to stability from the I-mP&R and ML RMS static sway on firm ground can be used for longitudinal assessments.

4.
Clin Auton Res ; 33(2): 149-163, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37038012

RESUMEN

PURPOSE: Concussion commonly results in exercise intolerance, often limiting return to activities. Improved understanding of the underlying mechanisms of post-concussive exercise intolerance could help guide mechanism-directed rehabilitation approaches. Signs of altered cardiovascular autonomic regulation-a potential contributor to exercise intolerance-have been reported following concussion, although it is not clear how these findings inform underlying mechanisms of post-concussive symptoms. Systematic summarization and synthesis of prior work is needed to best understand current evidence, allowing identification of common themes and gaps requiring further study. The purpose of this review was to (1) summarize published data linking exercise intolerance to autonomic dysfunction, and (2) summarize key findings, highlighting opportunities for future investigation. METHODS: The protocol was developed a priori, and conducted in five stages; results were collated, summarized, and reported according to PRISMA guidelines. Studies including injuries classified as mild traumatic brain injury (mTBI)/concussion, regardless of mechanism of injury, were included. Studies were required to include both autonomic and exercise intolerance testing. Exclusion criteria included confounding central or peripheral nervous system dysfunction beyond those stemming from the concussion, animal model studies, and case reports. RESULTS: A total of 3116 publications were screened; 17 were included in the final review. CONCLUSION: There was wide variability in approach to autonomic/exercise tolerance testing, as well as inclusion criteria/testing timelines, which limited comparisons across studies. The reviewed studies support current clinical suspicion of autonomic dysfunction as an important component of exercise intolerance. However, the specific mechanisms of impairment and relationship to symptoms and recovery require additional investigation.


Asunto(s)
Conmoción Encefálica , Síndrome Posconmocional , Disautonomías Primarias , Humanos , Sistema Nervioso Autónomo , Conmoción Encefálica/complicaciones , Conmoción Encefálica/diagnóstico , Ejercicio Físico , Síndrome Posconmocional/rehabilitación
5.
J Head Trauma Rehabil ; 38(3): E223-E232, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36731009

RESUMEN

OBJECTIVE: Unconstrained head motion is necessary to scan for visual cues during navigation, for minimizing threats, and to allow regulation of balance. Following mild traumatic brain injury (mTBI) people may experience alterations in head movement kinematics, which may be pronounced during gait tasks. Gait speed may also be impacted by the need to turn the head while walking in these individuals. The aim of this study was to examine head kinematics during dynamic gait tasks and the interaction between kinematics and gait speed in people with persistent symptoms after mTBI. SETTING: A clinical assessment laboratory. DESIGN: A cross-sectional, matched-cohort study. PARTICIPANTS: Forty-five individuals with a history of mTBI and 46 age-matched control individuals. MAIN MEASURES: All participants were tested at a single time point and completed the Functional Gait Assessment (FGA) while wearing a suite of body-mounted inertial measurement units (IMUs). Data collected from the IMUs were gait speed, and peak head rotation speed and amplitude in the yaw and pitch planes during the FGA-1, -3, and -4 tasks. RESULTS: Participants with mTBI demonstrated significantly slower head rotations in the yaw ( P = .0008) and pitch ( P = .002) planes. They also demonstrated significantly reduced amplitude of yaw plane head rotations ( P < .0001), but not pitch plane head rotations ( P = .84). Participants with mTBI had significantly slower gait speed during normal gait (FGA-1) ( P < .001) and experienced a significantly greater percent decrease in gait speed than healthy controls when walking with yaw plane head rotations (FGA-3) ( P = .02), but not pitch plane head rotations (FGA-4) ( P = .11). CONCLUSIONS: Participants with mTBI demonstrated smaller amplitudes and slower speeds of yaw plane head rotations and slower speeds of pitch plane head rotations during gait. Additionally, people with mTBI walked slower during normal gait and demonstrated a greater reduction in gait speed while walking with yaw plane head rotations compared with healthy controls.


Asunto(s)
Conmoción Encefálica , Movimientos de la Cabeza , Humanos , Movimientos de la Cabeza/fisiología , Velocidad al Caminar , Conmoción Encefálica/complicaciones , Estudios Transversales , Estudios de Cohortes , Caminata/fisiología , Marcha/fisiología
6.
J Sci Med Sport ; 26(2): 114-119, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36669902

RESUMEN

Identifying risk factors for musculoskeletal injury is critical to maintain the health and safety of athletes. While current tests consider isolated assessments of function or subjective ratings, objective tests of reactive postural responses, especially when in cognitively demanding scenarios, may better identify risk of musculoskeletal injury than traditional tests alone. OBJECTIVES: Examine if objective assessments of reactive postural responses, quantified using wearable inertial measurement units, are associated with the risk for acute lower extremity musculoskeletal injuries in collegiate athletes. DESIGN: Prospective survival analysis. METHODS: 191 Division I National Collegiate Athletic Association athletes completed an instrumented version of a modified Push and Release (I-mP&R) test at the beginning of their competitive season. The I-mP&R was performed with eyes closed under single- and dual-task (concurrent cognitive task) conditions. Inertial measurement units recorded acceleration and angular velocity data that was used to calculate time-to-stability. Acute lower extremity musculoskeletal injuries were tracked from first team activity for six months. Cox proportional hazard models were used to determine if longer times to stability were associated with faster time to injury. RESULTS: Longer time-to-stability was associated with increased risk of injury; every 250 ms increase in dual-task median time-to-stability was associated with a 36% increased risk of acute, lower-extremity musculoskeletal injury. CONCLUSIONS: Tests of reactive balance, particularly under dual-task conditions, may be able to identify athletes most at risk of acute lower extremity musculoskeletal injury. Clinically-feasible, instrumented tests of reactive should be considered in assessments for prediction and mitigation of musculoskeletal injury in collegiate athletes.


Asunto(s)
Traumatismos en Atletas , Conmoción Encefálica , Traumatismos de la Pierna , Humanos , Estudios Prospectivos , Atletas , Equilibrio Postural
7.
J Neurol Phys Ther ; 47(2): 84-90, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36538333

RESUMEN

BACKGROUND AND PURPOSE: The Functional Gait Assessment (FGA) and High Level Mobility Assessment Tool (HiMAT) are clinical batteries used to assess people with mild traumatic brain injury (mTBI). However, neither assessment was specifically developed for people with mTBI; the FGA was developed to evaluate vestibular deficits, and the HiMAT was developed for individuals with more severe TBI. To maximize the sensitivity and reduce the time burden of these assessments, the purpose of this study was to determine the combination of FGA and HiMAT items that best discriminates persons with persistent symptoms from mTBI from healthy controls. METHODS: Fifty-three symptomatic civilians with persistent symptoms from mTBI (21% male, aged 31 (9.5) years, 328 [267] days since concussion) and 57 healthy adults (28% male, aged 32 (9.6) years) participated across 3 sites. The FGA and HiMAT were evaluated sequentially as part of a larger study. To determine the best combination of items, a lasso-based generalized linear model (glm) was fit to all data. RESULTS: The area under the curve (AUC) for FGA and HiMAT total scores was 0.68 and 0.66, respectively. Lasso regression selected 4 items, including FGA Gait with Horizontal Head Turns and with Pivot Turn, and HiMAT Fast Forward and Backward Walk, and yielded an AUC (95% confidence interval) of 0.71 (0.61-0.79) using standard scoring. DISCUSSION AND CONCLUSIONS: The results provide initial evidence supporting a reduced, 4-Item Hybrid Assessment of Mobility for mTBI (HAM-4-mTBI) for monitoring individuals with mTBI. Future work should validate the HAM-4-mTBI and investigate its utility for tracking progression throughout rehabilitation.Video Abstract available for more insights from the authors (see the Video, Supplemental Digital Content 1, http://links.lww.com/JNPT/A409 ).


Asunto(s)
Conmoción Encefálica , Adulto , Humanos , Masculino , Femenino , Conmoción Encefálica/diagnóstico , Marcha , Caminata , Limitación de la Movilidad
8.
J Athl Train ; 2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36583958

RESUMEN

CONTEXT: Current clinical concussion evaluations assess balance deficits using static or dynamic balance tasks while largely ignoring reactive balance. Including a reactive balance assessment in current evaluations might provide a more comprehensive concussion evaluation. OBJECTIVE: The purpose of this study was to determine if redundancy exists within current clinical baseline assessments of concussion and whether reactive balance adds unique information to these evaluations. DESIGN: Cross Sectional Study. SETTING: Clinical Assessment. PATIENTS OR OTHER PARTICIPANTS: Two cohorts of data were collected at the beginning of the athletic season from healthy NCAA Division I athletes. Within the first cohort (n = 191), correlation analyses with clinical scores and inertial measurements were run between the ImPACT (Immediate Post-Concussion Assessment and Cognitive Tool), the BESS (Balance Error Scoring System), the modified Push and Release (mP&R), and instrumented mP&R (I-mP&R) to determine the strength of a relationship between these concussion tests. Within the second cohort (n = 88), correlation analyses were run between the BESS, the mP&R, Timed Tandem Gait, Walking with eyes closed, and clinical reaction time to determine the strength of the relationship between these concussion evaluation tests. MAIN OUTCOME MEASURES: ImPACT cognitive indices, BESS and mP&R clinical score and instrumented measures (BESS sway; I-mP&R time to stability, latency, and step length), TTG and Walking time to completion, and clinical reaction time. RESULTS: The strongest inter-instrument correlation value was r= 0.347, which was considered a weak correlation, between clinical reaction time and single task time to stability from the I-mP&R. The I-mP&R and mP&R clinical scores were weakly associated with the other assessments. CONCLUSION: The weak correlations between inter-assessment variables indicates that there is little redundancy within the current clinical evaluations. Furthermore, reactive balance represents a unique domain of function that may improve the comprehensiveness of clinical assessments.

9.
J Head Trauma Rehabil ; 37(5): 311-317, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35125435

RESUMEN

OBJECTIVE: Balance testing after concussion or mild traumatic brain injury (mTBI) can be useful in determining acute and chronic neuromuscular deficits that are unapparent from symptom scores or cognitive testing alone. Current assessments of balance do not comprehensively evaluate all 3 classes of balance: maintaining a posture; voluntary movement; and reactive postural response. Despite the utility of reactive postural responses in predicting fall risk in other balance-impaired populations, the effect of mTBI on reactive postural responses remains unclear. This review sought to (1) examine the extent and range of available research on reactive postural responses in people post-mTBI and (2) determine whether reactive postural responses (balance recovery) are affected by mTBI. DESIGN: Scoping review. METHODS: Studies were identified using MEDLINE, EMBASE, CINAHL, Cochrane Library, Dissertations and Theses Global, PsycINFO, SportDiscus, and Web of Science. Inclusion criteria were injury classified as mTBI with no confounding central or peripheral nervous system dysfunction beyond those stemming from the mTBI, quantitative measure of reactive postural response, and a discrete, externally driven perturbation was used to test reactive postural response. RESULTS: A total of 4747 publications were identified, and a total of 3 studies (5 publications) were included in the review. CONCLUSION: The limited number of studies available on this topic highlights the lack of investigation on reactive postural responses after mTBI. This review provides a new direction for balance assessments after mTBI and recommends incorporating all 3 classes of postural control in future research.


Asunto(s)
Conmoción Encefálica , Conmoción Encefálica/psicología , Humanos , Pruebas Neuropsicológicas , Equilibrio Postural/fisiología , Postura
10.
J Sport Rehabil ; 31(4): 517-523, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-34942598

RESUMEN

CONTEXT: Traditional assessments of reactive balance require sophisticated instrumentation to ensure objective, highly repeatable paradigms. This instrumentation is clinically impractical. The Push and Release test (P&R) is a well-validated clinical test that examines reactive balance, and the application of wearable inertial measurement units (IMU) enables sensitive and objective assessment of this clinically feasible test. The P&R relies on administrator experience and may be susceptible to interadministration reliability concerns. The purpose of this study was to evaluate the interadministrator reliability of objective outcomes from an instrumented, modified version of the P&R test. DESIGN: Crossover interadministrator design. METHODS: Twenty healthy adults (20-35 y) completed the P&R in 4 directions with 2 different administrators. Measures quantified using IMUs included step latency, step length, and time to stability. Lean angle (LA) at release was used as a measure of administration consistency. The intraclass correlation coefficient (ICC) estimate was used to assess interadministrator reliability in each direction. To determine consistency of LA within and across administrators, we calculated the SDs for each rater by direction and the interadministrator reliability of LA using ICC. RESULTS: Across individual directions, the ICC for agreement between raters ranged from .16 to .39 for step latency, from .52 to .62 for time to stability, and from .48 to .84 for step length. Summary metrics across all 4 directions produced higher ICC values. There was poor to moderate consistency in administration based on LA, but LA did not significantly affect any of the outcomes. CONCLUSION: The modified P&R yields moderate interadministrator reliability and high validity. Summary metrics over all 4 directions (the maximum step latency, the median time to stability, and the median step length) are likely more reliable than direction-specific scores. Variations in body size should also be considered when comparing populations.


Asunto(s)
Equilibrio Postural , Adulto , Humanos , Reproducibilidad de los Resultados
11.
Front Sports Act Living ; 2: 574848, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33345138

RESUMEN

Background: Deficits in neuromuscular control are widely reported after mild traumatic brain injury (mTBI). These deficits are speculated to contribute to the increased rate of musculoskeletal injuries after mTBI. However, a concrete mechanistic connection between post-mTBI deficits and musculoskeletal injuries has yet to be established. While impairments in some domains of balance control have been linked to musculoskeletal injuries, reactive balance control has received little attention in the mTBI literature, despite the inherent demand of balance recovery in athletics. Our central hypothesis is that the high rate of musculoskeletal injuries after mTBI is in part due to impaired reactive balance control necessary for balance recovery. The purpose of this study is to (1) characterize reactive postural responses to recover balance in athletes with recent mTBI compared to healthy control subjects, (2) determine the extent to which reactive postural responses remain impaired in athletes with recent mTBI who have been cleared to return to play, and (3) determine the relationship between reactive postural responses and acute lower extremity musculoskeletal injuries in a general sample of healthy collegiate athletes. Methods: This two-phase study will take place at the University of Utah in coordination with the University of Utah Athletics Department. Phase 1 will evaluate student-athletes who have sustained mTBI and teammate-matched controls who meet all the inclusion criteria. The participants will be assessed at multiple time points along the return-to-play progress of the athlete with mTBI. The primary outcome will be measures of reactive postural response derived from wearable sensors during the Push and Release (P&R) test. In phase 2, student-athletes will undergo a baseline assessment of postural responses. Acute lower extremity musculoskeletal injuries for each participant will be prospectively tracked for 1 year from the date of first team activity. The primary outcomes will be the measures of reactive postural responses and the time from first team activity to lower extremity injury. Discussion: Results from this study will further our understanding of changes in balance control, across all domains, after mTBI and identify the extent to which postural responses can be used to assess injury risk in collegiate athletes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...