Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38260427

RESUMEN

Organisms adjust their physiology to cope with environmental fluctuations and maintain fitness. These adaptations occur via genetic changes over multiple generations or through acclimation, a set of reversible phenotypic changes that confer resilience to the individual. Aquatic organisms are subject to dramatic seasonal fluctuations in water salinity, which can affect the function of lateral line mechanosensory hair cells. To maintain hair cell function when salinity decreases, ion-regulating cells, Neuromast-associated ionocytes (Nm ionocytes), increase in number and invade lateral line neuromasts. How environmental changes trigger this adaptive differentiation of Nm ionocytes and how these cells are specified is still unknown. Here, we identify Nm ionocyte progenitors as foxi3a/foxi3b-expressing skin cells and show that their differentiation is associated with sequential activation of different Notch pathway components, which control ionocyte survival. We demonstrate that new Nm ionocytes are rapidly specified by absolute salinity levels, independently of stress response pathways. We further show that Nm ionocyte differentiation is selectively triggered by depletion of specific ions, such as Ca2+ and Na+/Cl-, but not by low K+ levels, and is independent of media osmolarity. Finally, we demonstrate that hair cell activity plays a role in Nm ionocyte recruitment and that systemic factors are not necessary for Nm ionocyte induction. In summary, we have identified how environmental changes activate a signaling cascade that triggers basal skin cell progenitors to differentiate into Nm ionocytes and invade lateral line organs. This adaptive behavior is an example of physiological plasticity that may prove essential for survival in changing climates.

2.
Dev Cell ; 56(9): 1296-1312.e7, 2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33878346

RESUMEN

Mammalian inner ear and fish lateral line sensory hair cells (HCs) detect fluid motion to transduce environmental signals. Actively maintained ionic homeostasis of the mammalian inner ear endolymph is essential for HC function. In contrast, fish lateral line HCs are exposed to the fluctuating ionic composition of the aqueous environment. Using lineage labeling, in vivo time-lapse imaging and scRNA-seq, we discovered highly motile skin-derived cells that invade mature mechanosensory organs of the zebrafish lateral line and differentiate into Neuromast-associated (Nm) ionocytes. This invasion is adaptive as it is triggered by environmental fluctuations. Our discovery of Nm ionocytes challenges the notion of an entirely placodally derived lateral line and identifies Nm ionocytes as likely regulators of HC function possibly by modulating the ionic microenvironment. Nm ionocytes provide an experimentally accessible in vivo system to study cell invasion and migration, as well as the physiological adaptation of vertebrate organs to changing environmental conditions.


Asunto(s)
Adaptación Fisiológica , Movimiento Celular , Ambiente , Homeostasis , Sistema de la Línea Lateral/citología , Pez Cebra/fisiología , Animales , Biomarcadores/metabolismo , Recuento de Células , Factores de Transcripción Forkhead/metabolismo , Branquias/citología , Células Ciliadas Auditivas/citología , Concentración de Iones de Hidrógeno , Imagenología Tridimensional , Receptores Notch/metabolismo , Salinidad , Transducción de Señal , Piel/citología , Proteínas de Pez Cebra/metabolismo
3.
Cell Rep ; 20(11): 2678-2692, 2017 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-28903047

RESUMEN

Caloric restriction (CR) is the most effective intervention known to enhance lifespan, but its effect on the skin is poorly understood. Here, we show that CR mice display fur coat remodeling associated with an expansion of the hair follicle stem cell (HFSC) pool. We also find that the dermal adipocyte depot (dWAT) is underdeveloped in CR animals. The dermal/vennule annulus vasculature is enlarged, and a vascular endothelial growth factor (VEGF) switch and metabolic reprogramming in both the dermis and the epidermis are observed. When the fur coat is removed, CR mice display increased energy expenditure associated with lean weight loss and locomotion impairment. Our findings indicate that CR promotes extensive skin and fur remodeling. These changes are necessary for thermal homeostasis and metabolic fitness under conditions of limited energy intake, suggesting a potential adaptive mechanism.


Asunto(s)
Restricción Calórica , Piel/anatomía & histología , Piel/metabolismo , Tejido Adiposo Blanco/anatomía & histología , Animales , Regulación de la Temperatura Corporal , Peso Corporal , Dermis/anatomía & histología , Epidermis/anatomía & histología , Folículo Piloso/citología , Folículo Piloso/crecimiento & desarrollo , Locomoción , Ratones , Oxidación-Reducción , Piel/irrigación sanguínea , Piel/ultraestructura , Células Madre/citología , Factores de Tiempo
4.
Mech Ageing Dev ; 162: 9-17, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28213011

RESUMEN

Calorie restriction (CR) has been amply demonstrated to modify mitochondrial function. However, little is known regarding the effects of this dietary regimen on mitochondrial membranes. We isolated phospholipids from rat liver mitochondria from animals on CR or ad libitum diets and found that mitochondria from ad libitum animals present an increased content of lipoperoxides and the content of cardiolipin. Cardiolipin is the main anionic phospholipid present in mitochondrial membranes, and plays a key role in mitochondrial function, signaling and stress response. Expression levels of the enzymes involved in cardiolipin biosynthesis and remodeling were quantified and found to be upregulated in CR animals. Interestingly, when mitochondrial membranes were fractionated, the outer membrane presented a higher content of cardiolipin, indicating a redistribution of this phospholipid mediated by a phospholipid scramblase in CR. This change is associated with Drp1-mediated mitochondrial fragmentation and autophagy. Overall, we find that CR promotes extensive mitochondrial membrane remodeling, decreasing oxidatively damaged lipids, and increasing cardiolipin levels and redistributing cardiolipin. These changes in membrane properties are consistent with and may be causative of changes in mitochondrial morphology, function and turnover previously found to occur in CR.


Asunto(s)
Autofagia , Restricción Calórica , Cardiolipinas/metabolismo , Mitocondrias Hepáticas/metabolismo , Membranas Mitocondriales/metabolismo , Animales , Dinaminas/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley
5.
Biochem J ; 473(20): 3421-3449, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27729586

RESUMEN

Aging is often accompanied by a decline in mitochondrial mass and function in different tissues. Additionally, cell resistance to stress is frequently found to be prevented by higher mitochondrial respiratory capacity. These correlations strongly suggest mitochondria are key players in aging and senescence, acting by regulating energy homeostasis, redox balance and signalling pathways central in these processes. However, mitochondria display a wide array of functions and signalling properties, and the roles of these different characteristics are still widely unexplored. Furthermore, differences in mitochondrial properties and responses between tissues and cell types, and how these affect whole body metabolism are also still poorly understood. This review uncovers aspects of mitochondrial biology that have an impact upon aging in model organisms and selected mammalian cells and tissues.


Asunto(s)
Envejecimiento/fisiología , Mitocondrias/metabolismo , Células Madre Adultas/metabolismo , Animales , Encéfalo/metabolismo , Caenorhabditis elegans/metabolismo , Metabolismo Energético/fisiología , Humanos , Modelos Biológicos , Levaduras/metabolismo
6.
Stem Cells ; 34(3): 743-55, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26638184

RESUMEN

Mouse skin mesenchymal stem cells (msMSCs) are dermis CD105(+) CD90(+) CD73(+) CD29(+) CD34(-) mesodermal precursors which, after in vitro induction, undergo chondro, adipo, and osteogenesis. Extensive metabolic reconfiguration has been found to occur during differentiation, and the bioenergetic status of a cell is known to be dependent on the quality and abundance of the mitochondrial population, which may be regulated by fusion and fission. However, little is known regarding the impact of mitochondrial dynamics on the differentiation process. We addressed this knowledge gap by isolating MSCs from Swiss female mice, inducing these cells to differentiate into osteo, chondro, and adipocytes and measuring changes in mass, morphology, dynamics, and bioenergetics. Mitochondrial biogenesis was increased in adipogenesis, as evaluated through confocal microscopy, citrate synthase activity, and mtDNA content. The early steps of adipo and osteogenesis involved mitochondrial elongation, as well as increased expression of mitochondrial fusion proteins Mfn1 and 2. Chondrogenesis involved a fragmented mitochondrial phenotype, increased expression of fission proteins Drp1, Fis1, and 2, and enhanced mitophagy. These events were accompanied by profound bioenergetic alterations during the commitment period. Moreover, knockdown of Mfn2 in adipo and osteogenesis and the overexpression of a dominant negative form of Drp1 during chondrogenesis resulted in a loss of differentiation ability. Overall, we find that mitochondrial morphology and its regulating processes of fission/fusion are modulated early on during commitment, leading to alterations in the bioenergetic profile that are important for differentiation. We thus propose a central role for mitochondrial dynamics in the maintenance/commitment of mesenchymal stem cells.


Asunto(s)
Diferenciación Celular/genética , Dinaminas/biosíntesis , GTP Fosfohidrolasas/biosíntesis , Células Madre Mesenquimatosas , Mitocondrias/metabolismo , Adipogénesis/genética , Animales , Condrogénesis/genética , ADN Mitocondrial/genética , Dinaminas/genética , Femenino , GTP Fosfohidrolasas/genética , Regulación del Desarrollo de la Expresión Génica/genética , Ratones , Mitocondrias/genética , Dinámicas Mitocondriales/genética , Osteogénesis/genética , Piel/citología , Piel/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...